Difference between revisions of "User:Tohline/SSC/Virial/Polytropes"

From VistrailsWiki
Jump to navigation Jump to search
(→‎Renormalization: Finished introducing new normalization to adiabatic virial equilibrium equation)
Line 1,092: Line 1,092:
\biggl(\frac{3}{4\pi}\biggr)^{\gamma_g} \biggl( \frac{P_e}{P_\mathrm{norm}} \biggr)^{-1} \frac{\mathfrak{f}_A}{\mathfrak{f}_M^{\gamma_g}}
\biggl(\frac{3}{4\pi}\biggr)^{\gamma_g} \biggl( \frac{P_e}{P_\mathrm{norm}} \biggr)^{-1} \frac{\mathfrak{f}_A}{\mathfrak{f}_M^{\gamma_g}}
\cdot \chi_\mathrm{eq}^{4-3\gamma_g} +  
\cdot \chi_\mathrm{eq}^{4-3\gamma_g} +  
\frac{3}{20\pi} \biggl( \frac{P_e}{P_\mathrm{norm}} \biggr)^{-1} \frac{\mathfrak{f}_W}{\mathfrak{f}_M^2}</math>
\frac{3}{20\pi} \biggl( \frac{P_e}{P_\mathrm{norm}} \biggr)^{-1} \frac{\mathfrak{f}_W}{\mathfrak{f}_M^2} </math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,098: Line 1,098:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~0</math>
<math>~0 \, .</math>
   </td>
   </td>
</tr>
</tr>
Line 1,108: Line 1,108:
<table border="1" align="center" cellpadding="5">
<table border="1" align="center" cellpadding="5">
<tr><th align="center" colspan="1">
<tr><th align="center" colspan="1">
Adopted Normalizations for Adiabatic Systems
Renormalization for Adiabatic (''ad'') Systems
</th></tr>
</th></tr>
<tr><td align="center">
<tr><td align="center">
Line 1,115: Line 1,115:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~R_\mathrm{norm}</math>
<math>~\frac{R_\mathrm{ad}}{R_\mathrm{norm}}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,121: Line 1,121:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\biggl[ \biggl( \frac{G}{K} \biggr) M_\mathrm{tot}^{2-\gamma} \biggr]^{1/(4-3\gamma)} </math>
<math>~\biggl[ \frac{1}{5} \biggl( \frac{4\pi}{3} \biggr)^{\gamma_g-1}\biggr]^{1/(4-3\gamma_g)} </math>
   </td>
   </td>
</tr>
</tr>
Line 1,127: Line 1,127:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~P_\mathrm{norm}</math>
<math>~\frac{P_\mathrm{ad}}{P_\mathrm{norm}}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,133: Line 1,133:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\biggl[ \frac{K^4}{G^{3\gamma} M_\mathrm{tot}^{2\gamma}} \biggr]^{1/(4-3\gamma)}  </math>
<math>~\biggl[ \biggl( \frac{3\cdot  5^3}{4\pi} \biggr)^{\gamma_g} \biggr]^{1/(4-3\gamma)}  </math>
   </td>
   </td>
</tr>
</tr>
Line 1,145: Line 1,145:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~E_\mathrm{norm}</math>
<math>~\frac{E_\mathrm{ad}}{E_\mathrm{norm}}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~\equiv</math>
<math>~=</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~ P_\mathrm{norm} R_\mathrm{norm}^3 =  
<math>~ \frac{P_\mathrm{ad} R_\mathrm{ad}^3} {P_\mathrm{norm} R_\mathrm{norm}^3} =  
\biggl[ KG^{3(1-\gamma)}M_\mathrm{tot}^{6-5\gamma} \biggr]^{1/(4-3\gamma)} </math>
\biggl[ \biggl(\frac{3}{4\pi} \biggr) 5^{3\gamma_g-1} \biggr]^{1/(4-3\gamma_g)} </math>
   </td>
   </td>
</tr>
</tr>
Line 1,158: Line 1,158:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\rho_\mathrm{norm}</math>
<math>~\frac{\rho_\mathrm{ad}}{\rho_\mathrm{norm}}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~\equiv</math>
<math>~=</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\frac{3M_\mathrm{tot}}{4\pi R_\mathrm{norm}^3}
<math>~\biggl( \frac{R_\mathrm{ad}}{R_\mathrm{norm}} \biggr)^{-3}
= \frac{3}{4\pi} \biggl[ \frac{K^3}{G^3 M_\mathrm{tot}^2} \biggr]^{1/(4-3\gamma )} </math>
= \biggl[ 5^3 \biggl( \frac{4\pi}{3} \biggr)^{3-3\gamma_g}\biggr]^{1/(4-3\gamma_g)} </math>
   </td>
   </td>
</tr>
</tr>
Line 1,171: Line 1,171:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~c^2_\mathrm{norm}</math>
<math>~\frac{c^2_\mathrm{ad}}{c^2_\mathrm{norm}}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~\equiv</math>
<math>~=</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\frac{P_\mathrm{norm}}{\rho_\mathrm{norm}}
<math>~\frac{P_\mathrm{ad} ~\rho_\mathrm{norm}}{P_\mathrm{norm} ~\rho_\mathrm{ad}}
= \frac{4\pi}{3} \biggl[ \frac{K}{(G^3 M_\mathrm{tot}^2)^{\gamma-1}} \biggr]^{1/(4-3\gamma )}  </math>
= \frac{3}{4\pi} \biggl[ \biggl( \frac{3\cdot 5^3}{4\pi} \biggr)^{\gamma_g-1} \biggr]^{1/(4-3\gamma_g )}  </math>
   </td>
   </td>
</tr>
</tr>
Line 1,187: Line 1,187:
</table>
</table>
</div>
</div>
Multiplying through the virial equilibrium expression by <math>~(R_\mathrm{norm}/R_\mathrm{ad})^4</math>, we obtain,
Multiplying through the virial equilibrium expression by <math>~(R_\mathrm{norm}/R_\mathrm{ad})^4</math> gives,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\chi_\mathrm{ad}^4
- \frac{1}{\Pi_\mathrm{ad}} \biggl( \frac{\mathfrak{f}_A}{\mathfrak{f}_M^{\gamma_g}} \biggr) \chi_\mathrm{ad}^{4-3\gamma_g}
+ \frac{1}{\Pi_\mathrm{ad}} \biggl( \frac{\mathfrak{f}_W}{\mathfrak{f}_M^2} \biggr) </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~0 \, ,</math>
  </td>
</tr>
</table>
</div>


where,
where,
Line 1,218: Line 1,235:
</table>
</table>
</div>
</div>


====P-V Diagram for Unity Form Factors====
====P-V Diagram for Unity Form Factors====

Revision as of 19:33, 2 August 2014


Virial Equilibrium of Adiabatic Spheres

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Review

Adopted Normalizations

In an introductory discussion of the virial equilibrium structure of spherically symmetric configurations, we adopted the following physical parameter normalizations for adiabatic systems.

Adopted Normalizations for Adiabatic Systems

<math>~R_\mathrm{norm}</math>

<math>~\equiv</math>

<math>~\biggl[ \biggl( \frac{G}{K} \biggr) M_\mathrm{tot}^{2-\gamma} \biggr]^{1/(4-3\gamma)} </math>

<math>~P_\mathrm{norm}</math>

<math>~\equiv</math>

<math>~\biggl[ \frac{K^4}{G^{3\gamma} M_\mathrm{tot}^{2\gamma}} \biggr]^{1/(4-3\gamma)} </math>


<math>~E_\mathrm{norm}</math>

<math>~\equiv</math>

<math>~ P_\mathrm{norm} R_\mathrm{norm}^3 = \biggl[ KG^{3(1-\gamma)}M_\mathrm{tot}^{6-5\gamma} \biggr]^{1/(4-3\gamma)} </math>

<math>~\rho_\mathrm{norm}</math>

<math>~\equiv</math>

<math>~\frac{3M_\mathrm{tot}}{4\pi R_\mathrm{norm}^3} = \frac{3}{4\pi} \biggl[ \frac{K^3}{G^3 M_\mathrm{tot}^2} \biggr]^{1/(4-3\gamma )} </math>

<math>~c^2_\mathrm{norm}</math>

<math>~\equiv</math>

<math>~\frac{P_\mathrm{norm}}{\rho_\mathrm{norm}} = \frac{4\pi}{3} \biggl[ \frac{K}{(G^3 M_\mathrm{tot}^2)^{\gamma-1}} \biggr]^{1/(4-3\gamma )} </math>


Virial Equilibrium

Also in our introductory discussion — see especially the section titled, Energy Extrema — we deduced that a system's equilibrium radius, <math>~R_\mathrm{eq}</math>, measured relative to <math>~R_\mathrm{norm}</math>, i.e., the dimensionless equilibrium radius,

<math>~\chi_\mathrm{eq} \equiv \frac{R_\mathrm{eq}}{R_\mathrm{norm}} \, ,</math>

is given by the root(s) of the following equation:

<math> 2C \chi_\mathrm{eq}^{-2} + ~ (1-\delta_{1\gamma_g})~3 B\chi_\mathrm{eq}^{3 -3\gamma_g} +~ \delta_{1\gamma_g} 3B_I ~-~3A\chi_\mathrm{eq}^{-1} -~ 3D_\chi\mathrm{eq}^3 = 0 \, , </math>

where the definitions of the various coefficients are,

<math>~A</math>

<math>~\equiv</math>

<math>\frac{1}{5} \cdot \frac{\mathfrak{f}_W}{\mathfrak{f}_M^2} \, ,</math>

<math>~B</math>

<math>~\equiv</math>

<math> \biggl( \frac{4\pi}{3} \biggr)^{1-\gamma_g} \frac{\mathfrak{f}_A}{\mathfrak{f}_M^{\gamma_g}} \, , </math>

<math>~B_I</math>

<math>~\equiv</math>

<math> 1 \, , </math>

<math>~C</math>

<math>~\equiv</math>

<math> \frac{3\cdot 5}{2^4 \pi} \biggl[ \frac{J^2 c_\mathrm{norm}^2}{G^2 M_\mathrm{tot}^4} \biggr] \cdot \frac{\mathfrak{f}_M}{\mathfrak{f}_T} \, , </math>

<math>~D</math>

<math>~\equiv</math>

<math> \biggl( \frac{4\pi}{3} \biggr) \frac{P_e}{P_\mathrm{norm}} \, . </math>

(The dimensionless structural form factors, <math>~\mathfrak{f}_i,</math> that appear in these expressions are defined in our accompanying introductory discussion and are discussed further, below.) Once the pressure exerted by the external medium (<math>~P_e</math>), and the configuration's mass (<math>~M_\mathrm{tot}</math>), angular momentum (<math>~J</math>), and specific entropy (via <math>~K</math>) have been specified, the values of all of the coefficients are known and <math>~\chi_\mathrm{eq}</math> can be determined.

Isolated, Nonrotating Configuration

For a nonrotating configuration (<math>~C=J=0</math>) that is not influenced by the effects of a bounding external medium (<math>~D=P_e = 0</math>), the statement of virial equilibrium is,

<math> (1-\delta_{1\gamma_g})~3 B\chi_\mathrm{eq}^{3 -3\gamma_g} +~ \delta_{1\gamma_g} 3B_I ~-~3A\chi_\mathrm{eq}^{-1} = 0 \, . </math>

Adiabatic Evolutions

For adiabatic configurations <math>(\delta_{1\gamma_g} = 0)</math>, one equilibrium state exists for each value of <math>\gamma_g</math> and it occurs where,

<math> 3 B\chi_\mathrm{eq}^{3 -3\gamma_g} =~3A\chi_\mathrm{eq}^{-1} \, , </math>

that is, where,

<math>~R_\mathrm{eq} = R_\mathrm{norm} \chi_\mathrm{eq} </math>

<math>~=</math>

<math> R_\mathrm{norm} \biggl[ \frac{A}{B} \biggr]^{1/(4-3\gamma_g)} </math>

 

<math>~=</math>

<math> R_\mathrm{norm} \biggl[ \frac{1}{5} \biggl( \frac{4\pi}{3} \biggr)^{\gamma_g-1} \frac{\mathfrak{f}_W}{\mathfrak{f}_A \mathfrak{f}_M^{2-\gamma_g}} \biggr]^{1/(4-3\gamma_g)} </math>

 

<math>~=</math>

<math> \biggl[ \frac{1}{5} \biggl( \frac{4\pi}{3} \biggr)^{\gamma_g-1} \frac{\mathfrak{f}_W}{\mathfrak{f}_A \mathfrak{f}_M^{2-\gamma_g}} \cdot \frac{GM_\mathrm{tot}^{2-\gamma_g}}{K} \biggr]^{1/(4-3\gamma_g)} \, . </math>

Accordingly, the equilibrium mass-radius relationship for adiabatic configurations of a given specific entropy is,

<math> M_\mathrm{tot}^{(\gamma_g - 2)} \propto R_\mathrm{eq}^{(3\gamma_g -4)} \, . </math>

We see that, for <math>~\gamma_g=2</math>, the equilibrium radius depends only on the specific entropy of the gas and is independent of the configuration's mass. Conversely, for <math>~\gamma_g = 4/3</math>, the mass of the configuration is independent of the radius. For <math>~\gamma_g > 2</math> or <math>~\gamma_g < 4/3</math>, configurations with larger mass (but the same specific entropy) have larger equilibrium radii. However, for <math>~\gamma_g</math> in the range, <math>~2 > \gamma_g > 4/3</math>, configurations with larger mass have smaller equilibrium radii. (Note that the related result for isothermal configurations can be obtained by setting <math>~\gamma_g = 1</math> in this adiabatic solution, because <math>~K = c_s^2</math> when <math>~\gamma_g = 1</math>.)

Role of Structural Form Factors

When employing a virial analysis to determine the radius of an equilibrium configuration, it is customary to set the structural form factors, <math>~\mathfrak{f}_M</math>, <math>~\mathfrak{f}_W</math> and <math>~\mathfrak{f}_A</math>, to unity and accept that the expression derived for <math>~R_\mathrm{eq}</math> is an estimate of the configuration's radius that is good to within a factor of order unity. As has been demonstrated in our related discussion of the equilibrium of uniform-density spheres, these form factors can be evaluated if/when the internal structural profile of an equilibrium configuration is known from a complementary detailed force-balance analysis. In the case being discussed here of isolated, spherical polytropes, solutions to the,

Lane-Emden Equation

LSU Key.png

<math>~\frac{1}{\xi^2} \frac{d}{d\xi}\biggl( \xi^2 \frac{d\Theta_H}{d\xi} \biggr) = - \Theta_H^n</math>

can provide the desired internal structural information. Here we draw on Chandrasekhar's [C67] discussion of the structure of spherical polytropes to show precisely how our structural form factors can be expressed in terms of the Lane-Emden function, <math>~\Theta_H</math>, dimensionless radial coordinate, <math>~\xi</math>, and the function derivative, <math>~\Theta^' = d\Theta_H/d\xi</math>.

Mass

We note, first, that Chandrasekhar [C67] — see his Equation (78) on p. 99 — presents the following expression for the mean-to-central density ratio:

<math>~\frac{\bar\rho}{\rho_c}</math>

<math>~=</math>

<math>~ \biggl[ - \frac{3\Theta^'}{\xi} \biggr]_{\xi_1} \, ,</math>

where the notation at the bottom of the closing square bracket means that everything inside the square brackets should be, "evaluated at the surface of the configuration," that is, at the radial location, <math>~\xi_1</math>, where the Lane-Emden function, <math>~\Theta_H(\xi)</math>, first goes to zero. But, as we pointed out when defining the structural form factors, the form factor associated with the configuration mass, <math>~\mathfrak{f}_M</math>, is equivalent to the mean-to-central density ratio. We conclude, therefore, that,

<math>~\mathfrak{f}_M</math>

<math>~=</math>

<math>~ \biggl[ - \frac{3\Theta^'}{\xi} \biggr]_{\xi_1} \, .</math>


Gravitational Potential Energy

Second, we note that Chandrasekhar's [C67] expression for the gravitational potential energy — see his Equation (90), p. 101 — is,

<math>~-W</math>

<math>~=</math>

<math>~\frac{3}{5-n} \biggl( \frac{GM^2}{R} \biggr) \, ,</math>

whereas our analogous expression is,

<math>~-W</math>

<math>~=</math>

<math>~\frac{3}{5} \biggl( \frac{GM_\mathrm{tot}^2}{R_\mathrm{eq}} \biggr) \frac{\mathfrak{f}_W}{\mathfrak{f}_M^2} \, .</math>

We conclude, therefore, that,

<math>~\frac{\mathfrak{f}_W}{\mathfrak{f}_M^2} </math>

<math>~=</math>

<math>~\frac{5}{5-n} </math>

<math>\Rightarrow ~~~~\mathfrak{f}_W </math>

<math>~=</math>

<math>~\frac{3^2\cdot 5}{5-n} \biggl[ \frac{\Theta^'}{\xi} \biggr]^2_{\xi_1} \, .</math>

Mass-Radius Relationship

Third, Chandrasekhar [C67] shows — see his Equation (72), p. 98 — that the general mass-radius relationship for isolated spherical polytropes is,

<math>~GM^{(n-1)/n} R^{(3-n)/n}</math>

<math>~=</math>

<math> ~\frac{(n+1)K}{(4\pi)^{1/n}} \biggl[ - \xi^{(n+1)/(n-1)} \frac{d\Theta_H}{d\xi} \biggr]^{(n-1)/n}_{\xi=\xi_1} \, , </math>

which we choose to rewrite as,

<math>~4\pi \biggl( \frac{G}{K}\biggr)^n M^{(n-1)} R^{(3-n)}</math>

<math>~=</math>

<math> ~(n+1)^n\biggl[ \xi^{(n+1)} (-\Theta^')^{(n-1)}\biggr]_{\xi=\xi_1} </math>

 

<math>~=</math>

<math> - \biggl( \frac{\xi}{\Theta^'} \biggr)_{\xi=\xi_1} \biggl[ (n+1) \xi ~(-\Theta^') \biggr]^n_{\xi=\xi_1} \, . </math>

By comparison, if we set <math>~\gamma_g = (1+1/n)</math> in the expression for the equilibrium radius that has been derived, above, from an analysis of extrema in the free energy function, we obtain,

<math>~4\pi \biggl( \frac{G}{K}\biggr)^n M^{(n-1)} R_\mathrm{eq}^{(3-n)}</math>

<math>~=</math>

<math> ~\frac{3}{\mathfrak{f}_M} \biggl( \frac{5\mathfrak{f}_A \mathfrak{f}_M}{\mathfrak{f}_W} \biggr)^n \, . </math>

Hence, it appears as though, quite generally,

<math>~ \frac{1}{\mathfrak{f}_M} \biggl( \frac{5\mathfrak{f}_A \mathfrak{f}_M}{\mathfrak{f}_W} \biggr)^n </math>

<math>~=</math>

<math> - \biggl( \frac{\xi}{3\Theta^'} \biggr)_{\xi=\xi_1} \biggl[ (n+1) \xi ~(-\Theta^') \biggr]^n_{\xi=\xi_1} \, . </math>

Or, taking into account the expressions for <math>~\mathfrak{f}_M</math> and <math>~\mathfrak{f}_W</math> that have just been uncovered, we conclude that,

<math>~ \frac{5\mathfrak{f}_A \mathfrak{f}_M}{\mathfrak{f}_W} </math>

<math>~=</math>

<math> \biggl[ (n+1) \xi ~(-\Theta^') \biggr]_{\xi=\xi_1} </math>

<math>\Rightarrow ~~~~ \frac{\mathfrak{f}_A}{\mathfrak{f}_W} </math>

<math>~=</math>

<math> \frac{(n+1) }{3\cdot 5} ~\xi_1^2 \, . </math>

<math>\Rightarrow ~~~~ \mathfrak{f}_A </math>

<math>~=</math>

<math> \frac{(n+1) }{3\cdot 5} ~\xi_1^2 \biggl\{ \frac{3^2\cdot 5}{5-n} \biggl[ \frac{\Theta^'}{\xi} \biggr]^2_{\xi_1} \biggr\}\, . </math>

 

<math>~=</math>

<math> \frac{3(n+1) }{(5-n)} ~\biggl[ \Theta^' \biggr]^2_{\xi_1} \, . </math>

Central Pressure

It is also worth pointing out that Chandrasekhar [C67] — see his Equations (80) & (81), p. 99 — introduces a dimensionless structural form factor, <math>~W_n</math>, for the central pressure via the expression,

<math>~P_c</math>

<math>~=</math>

<math>~W_n \biggl( \frac{GM^2}{R^4} \biggr) \, ,</math>

and demonstrates that,

<math>~\frac{1}{W_n}</math>

<math>~\equiv</math>

<math>~4\pi (n+1) \biggl[ \Theta^' \biggr]^2_{\xi_1} \, .</math>

It is therefore clear that a spherical polytrope's central pressure is expressible in terms of our structural form factor, <math>~\mathfrak{f}_A</math>, as,

<math>~P_c</math>

<math>~=</math>

<math>~\frac{3}{4\pi (5-n)} \biggl( \frac{GM_\mathrm{tot}^2}{R_\mathrm{eq}^4} \biggr) \frac{1}{\mathfrak{f}_A} \, .</math>

Alternate Derivations

Central Pressure

As is pointed out, above, in our discussion of the mass-radius relationship, the expression for the equilibrium radius that has been derived from our analysis of extrema in the free energy function can be written as,

<math>~4\pi \biggl( \frac{G}{K}\biggr)^n M^{(n-1)} R_\mathrm{eq}^{(3-n)}</math>

<math>~=</math>

<math> ~\frac{3}{\mathfrak{f}_M} \biggl( \frac{5\mathfrak{f}_A \mathfrak{f}_M}{\mathfrak{f}_W} \biggr)^n \, . </math>

Via the polytropic equation of state, we can relate <math>~K</math> to the central pressure as follows:

<math>~P_c</math>

<math>~=</math>

<math> ~K \rho_c^{1+1/n} = K \bar\rho^{1+1/n} \biggl( \frac{\rho_c}{\bar\rho} \biggr)^{1+1/n} = K \biggl[ \frac{3M_\mathrm{tot}}{4\pi R_\mathrm{eq}^3} \biggr]^{(n+1)/n} \biggl( \frac{1}{\mathfrak{f}_M} \biggr)^{(n+1)/n} </math>

<math>\Rightarrow ~~~~ K^{n}</math>

<math>~=</math>

<math> P_c^{n} \biggl[ \frac{4\pi R_\mathrm{eq}^3}{3M_\mathrm{tot}} \biggr]^{(n+1)} \mathfrak{f}_M^{(n+1)} \, . </math>

Hence, in the mass-radius relationship we can replace <math>~K</math> with this expression to obtain,

<math>~4\pi \biggl( \frac{G}{P_c}\biggr)^n M^{(n-1)} R_\mathrm{eq}^{(3-n)} \biggl[ \frac{3M_\mathrm{tot}}{4\pi R_\mathrm{eq}^3} \biggr]^{(n+1)}</math>

<math>~=</math>

<math> ~3 \biggl( \frac{5\mathfrak{f}_A \mathfrak{f}_M^2}{\mathfrak{f}_W} \biggr)^n </math>

<math>\Rightarrow ~~~~ \biggl( \frac{G M_\mathrm{tot}^2}{P_c R_\mathrm{eq}^4}\biggr)^n \biggl( \frac{3}{4\pi } \biggr)^{n}</math>

<math>~=</math>

<math> ~\biggl( \frac{5\mathfrak{f}_A \mathfrak{f}_M^2}{\mathfrak{f}_W} \biggr)^n </math>

<math> \Rightarrow ~~~~ P_c = \frac{3 }{20\pi }\biggl( \frac{G M_\mathrm{tot}^2}{R_\mathrm{eq}^4} \biggr) \cdot \frac{\mathfrak{f}_W}{\mathfrak{f}_A \mathfrak{f}_M^2} \, . </math>

Now, from our above examination of the expression for the gravitational potential energy, we know that,

<math>~\frac{\mathfrak{f}_W}{\mathfrak{f}_M^2}</math>

<math>~=</math>

<math>~\frac{5}{5-n} \, .</math>

Hence, our expression for the central pressure becomes,

<math> ~P_c = \frac{3 }{4\pi (5-n)}\biggl( \frac{G M_\mathrm{tot}^2}{R_\mathrm{eq}^4} \biggr) \cdot \frac{1}{\mathfrak{f}_A } \, . </math>

As it should, this precisely matches the expression that we derived, above, starting from Chandrasekhar's [C67] presentation.

Gravitational Potential Energy

As has been discussed elsewhere, we have learned from Chandrasekhar's discussion of polytropic spheres [C67] — see his Equation (16), p. 64 — that if a spherically symmetric system is in hydrostatic balance, the total gravitational potential energy can be obtained from the following integral:

<math>~W_\mathrm{grav}</math>

<math>~=</math>

<math>~ + \frac{1}{2} \int_0^R \Phi(r) dm \, .</math>

Using "technique #3" to solve the differential equation that governs the statement of hydrostatic balance, we know that in any polytropic sphere, <math>~\Phi(r)</math> is related to the configuration's radial enthalpy profile, <math>~H(r)</math>, via the algebraic expression,

<math>~\Phi(r) + H(r)</math>

<math>~=</math>

<math>~C_B \, ,</math>

where, <math>~C_B</math>, is an integration constant. At the surface of the equilibrium configuration, <math>~H = 0</math> and <math>~\Phi = - GM_\mathrm{tot}/R_\mathrm{eq}</math>, so the integration constant is,

<math>~C_B</math>

<math>~=</math>

<math>~- \frac{GM_\mathrm{tot}}{R_\mathrm{eq}} \, ,</math>

which implies,

<math>~\Phi(r) </math>

<math>~=</math>

<math>~ - H(r) - \frac{GM_\mathrm{tot}}{R_\mathrm{eq}} \, .</math>

Now, from our general discussion of barotropic relations, we can write,

<math>~H(r)</math>

<math>~=</math>

<math>~(n+1) \frac{P(r)}{\rho(r)} \, .</math>

Hence,

<math>~-\Phi(r)</math>

<math>~=</math>

<math>~(n+1) \frac{P(r)}{\rho(r)} + \frac{GM_\mathrm{tot}}{R_\mathrm{eq}} \, ,</math>

and,

<math>~W_\mathrm{grav}</math>

<math>~=</math>

<math>~ - \frac{1}{2} \int_0^R \biggl[ (n+1) \frac{P(r)}{\rho(r)} + \frac{GM_\mathrm{tot}}{R_\mathrm{eq}} \biggr] 4\pi \rho(r) r^2 dr </math>

 

<math>~=</math>

<math>~ - 2\pi \biggl\{ (n+1) \int_0^R P(r) r^2 dr + \frac{GM_\mathrm{tot}}{R_\mathrm{eq}} \int_0^R \rho(r) r^2 dr \biggr\} </math>

 

<math>~=</math>

<math>~ - 2\pi \biggl\{ \frac{1}{3} (n+1)P_c R_\mathrm{eq}^3 \int_0^1 3\biggl[ \frac{P(x)}{P_c} \biggr] x^2 dx + \frac{GM_\mathrm{tot}}{3R_\mathrm{eq}} \biggl( \rho_c R_\mathrm{eq}^3 \biggr) \int_0^1 3 \biggl[ \frac{\rho(x)}{\rho_c} \biggr] x^2 dx \biggr\} </math>

 

<math>~=</math>

<math>~ - 2\pi \biggl\{ \frac{1}{3} (n+1)P_c R_\mathrm{eq}^3 \mathfrak{f}_A + \frac{GM_\mathrm{tot}}{3R_\mathrm{eq}} \biggl( \rho_c R_\mathrm{eq}^3 \biggr) \mathfrak{f}_M \biggr\} </math>

 

<math>~=</math>

<math>~ - \frac{GM_\mathrm{tot}^2}{R_\mathrm{eq}} \biggl\{ \frac{2\pi}{3} (n+1) \biggl[ \frac{P_c R_\mathrm{eq}^4}{GM_\mathrm{tot}^2} \biggr] \mathfrak{f}_A + \frac{1}{2} \biggl[ \frac{4\pi \rho_c R_\mathrm{eq}^3}{3M_\mathrm{tot}} \biggr] \mathfrak{f}_M \biggr\} </math>

 

<math>~=</math>

<math>~ - \frac{1}{2} \frac{GM_\mathrm{tot}^2}{R_\mathrm{eq}} \biggl\{ \frac{4\pi}{3} (n+1) \biggl[ \frac{P_c R_\mathrm{eq}^4}{GM_\mathrm{tot}^2} \biggr] \mathfrak{f}_A + 1 \biggr\} \, .</math>

We now recall two earlier expressions that show the role that our structural form factors play in the evaluation of <math>~W</math> and <math>~P_c</math>, namely,

<math>~W_\mathrm{grav}</math>

<math>~=</math>

<math>~ - \frac{3}{5} \biggl( \frac{GM_\mathrm{tot}^2}{R_\mathrm{eq}} \biggr) \cdot \frac{\mathfrak{f}_W}{\mathfrak{f}_M^2}</math>

and,

<math>~P_c</math>

<math>~=</math>

<math>~ \frac{3 }{20\pi }\biggl( \frac{G M_\mathrm{tot}^2}{R_\mathrm{eq}^4} \biggr) \cdot \frac{\mathfrak{f}_W}{\mathfrak{f}_A \mathfrak{f}_M^2} \, .</math>

Plugging these into our newly derived expression for the gravitational potential energy gives,

<math>~- \frac{3}{5} \cdot \frac{\mathfrak{f}_W}{\mathfrak{f}_M^2}</math>

<math>~=</math>

<math>~ - \frac{1}{2} \biggl\{ \frac{4\pi}{3} (n+1) \biggl[ \frac{3 }{20\pi }\cdot \frac{\mathfrak{f}_W}{\mathfrak{f}_A \mathfrak{f}_M^2} \biggr] \mathfrak{f}_A + 1 \biggr\} </math>

<math>\Rightarrow ~~~~ (2\cdot 3) \cdot \frac{\mathfrak{f}_W}{\mathfrak{f}_M^2}</math>

<math>~=</math>

<math>~ (n+1) \cdot \frac{\mathfrak{f}_W}{\mathfrak{f}_M^2} + 5 </math>

<math>\Rightarrow ~~~~ (5 - n) \cdot \frac{\mathfrak{f}_W}{\mathfrak{f}_M^2}</math>

<math>~=</math>

<math>~ 5 </math>

<math>\Rightarrow ~~~~ \frac{\mathfrak{f}_W}{\mathfrak{f}_M^2}</math>

<math>~=</math>

<math>~ \frac{5}{5-n} \, . </math>

As it should, this agrees with the expression for the ratio, <math>\mathfrak{f}_W/\mathfrak{f}_M^2</math>, that was derived in our above discussion of the gravitational potential energy.

Nonrotating Configuration Embedded in an External Medium

For a nonrotating configuration <math>~(C=J=0)</math> that is embedded in, and is influenced by the pressure <math>~P_e</math> of, an external medium, the statement of virial equilibrium is,

<math> (1-\delta_{1\gamma_g})~3 B\chi_\mathrm{eq}^{3 -3\gamma_g} +~ \delta_{1\gamma_g} 3B_I ~-~3A\chi_\mathrm{eq}^{-1} -~ 3D\chi_\mathrm{eq}^3 = 0 \, . </math>


Bounded Adiabatic

For adiabatic configurations <math>(\delta_{1\gamma_g} = 0)</math>, equilibrium states exist at radii given by the roots of the following expression:

<math> 3 B\chi_\mathrm{eq}^{3 -3\gamma_g} ~-~3A\chi_\mathrm{eq}^{-1} -~ 3D\chi_\mathrm{eq}^3 = 0 \, . </math>

Whitworth's (1981) Equivalent Relation

This is precisely the same condition that derives from setting equation (3) to zero in Whitworth's (1981, MNRAS, 195, 967) discussion of the Global Gravitational Stability for One-dimensional Polytropes. The overlap with Whitworth's narative is clearer after introducing the algebraic expressions for the coefficients <math>~A</math>, <math>~B</math>, and <math>~D</math>, to obtain,

<math>~4\pi \biggl( \frac{P_e}{P_\mathrm{norm}} \biggr) \chi_\mathrm{eq}^3 </math>

<math>~=</math>

<math>~3 \biggl( \frac{4\pi}{3} \biggr)^{1-\gamma_g} \frac{\mathfrak{f}_A}{\mathfrak{f}_M^{\gamma_g}} \cdot \chi_\mathrm{eq}^{3 -3\gamma_g} ~-~\frac{3}{5} \cdot \frac{\mathfrak{f}_W}{\mathfrak{f}^2_M} \cdot \chi_\mathrm{eq}^{-1} \, ;</math>

dividing the equation through by <math>~(4\pi \chi_\mathrm{eq}^3/P_\mathrm{norm})</math>,

<math>~P_e </math>

<math>~=</math>

<math>~P_\mathrm{norm} \biggl[ \biggl( \frac{3}{4\pi} \biggr)^{\gamma_g} \frac{\mathfrak{f}_A}{\mathfrak{f}_M^{\gamma_g}} \cdot \chi_\mathrm{eq}^{-3\gamma_g} ~- \biggl(\frac{3}{20\pi} \biggr) \frac{\mathfrak{f}_W}{\mathfrak{f}^2_M} \cdot \chi_\mathrm{eq}^{-4} \biggr] </math>

 

<math>~=</math>

<math>~P_\mathrm{norm} R_\mathrm{norm}^4\biggl[ \biggl( \frac{3}{4\pi R_\mathrm{eq}^3} \biggr)^{\gamma_g} \frac{\mathfrak{f}_A}{\mathfrak{f}_M^{\gamma_g}} \cdot R_\mathrm{norm}^{3\gamma_g-4} - \biggl(\frac{3}{20\pi R_\mathrm{eq}^4} \biggr) \frac{\mathfrak{f}_W}{\mathfrak{f}^2_M} \biggr] \, ;</math>

and inserting expressions for the parameter normalizations as defined in our accompanying introductory discussion to obtain,

<math>~P_e </math>

<math>~=</math>

<math>~GM_\mathrm{tot}^2\biggl[ \biggl( \frac{3}{4\pi R_\mathrm{eq}^3} \biggr)^{\gamma_g} \frac{\mathfrak{f}_A}{\mathfrak{f}_M^{\gamma_g}} \cdot \frac{K M_\mathrm{tot}^{\gamma_g-2}}{G} - \biggl(\frac{3}{20\pi R_\mathrm{eq}^4} \biggr) \frac{\mathfrak{f}_W}{\mathfrak{f}^2_M} \biggr] </math>

 

<math>~=</math>

<math>~K \biggl( \frac{3M_\mathrm{tot}}{4\pi R_\mathrm{eq}^3} \biggr)^{\gamma_g} \frac{\mathfrak{f}_A}{\mathfrak{f}_M^{\gamma_g}} - \biggl(\frac{3GM_\mathrm{tot}^2}{20\pi R_\mathrm{eq}^4} \biggr) \frac{\mathfrak{f}_W}{\mathfrak{f}^2_M} \, .</math>

If the structural form factors are set equal to unity, this exactly matches equation (5) of Whitworth, which reads:

Whitworth (1981, MNRAS, 195, 967)

Renormalization

Returning to the dimensionless form of this expression and multiplying through by <math>~[-\chi_\mathrm{eq}/(3D)]</math>, we obtain,

<math> \chi_\mathrm{eq}^4 - \frac{B}{D} \chi_\mathrm{eq}^{4-3\gamma_g} + \frac{A}{D} = 0 \, , </math>

or, after plugging in definitions of the coefficients, <math>~A</math>, <math>~B</math>, and <math>~D</math>,

<math>~\chi_\mathrm{eq}^4 - \biggl(\frac{3}{4\pi}\biggr)^{\gamma_g} \biggl( \frac{P_e}{P_\mathrm{norm}} \biggr)^{-1} \frac{\mathfrak{f}_A}{\mathfrak{f}_M^{\gamma_g}} \cdot \chi_\mathrm{eq}^{4-3\gamma_g} + \frac{3}{20\pi} \biggl( \frac{P_e}{P_\mathrm{norm}} \biggr)^{-1} \frac{\mathfrak{f}_W}{\mathfrak{f}_M^2} </math>

<math>~=</math>

<math>~0 \, .</math>

Before attempting to evaluate the roots of this virial equilibrium relation, we have found it instructive to adopt the following modified set of normalization parameters.

Renormalization for Adiabatic (ad) Systems

<math>~\frac{R_\mathrm{ad}}{R_\mathrm{norm}}</math>

<math>~\equiv</math>

<math>~\biggl[ \frac{1}{5} \biggl( \frac{4\pi}{3} \biggr)^{\gamma_g-1}\biggr]^{1/(4-3\gamma_g)} </math>

<math>~\frac{P_\mathrm{ad}}{P_\mathrm{norm}}</math>

<math>~\equiv</math>

<math>~\biggl[ \biggl( \frac{3\cdot 5^3}{4\pi} \biggr)^{\gamma_g} \biggr]^{1/(4-3\gamma)} </math>


<math>~\frac{E_\mathrm{ad}}{E_\mathrm{norm}}</math>

<math>~=</math>

<math>~ \frac{P_\mathrm{ad} R_\mathrm{ad}^3} {P_\mathrm{norm} R_\mathrm{norm}^3} = \biggl[ \biggl(\frac{3}{4\pi} \biggr) 5^{3\gamma_g-1} \biggr]^{1/(4-3\gamma_g)} </math>

<math>~\frac{\rho_\mathrm{ad}}{\rho_\mathrm{norm}}</math>

<math>~=</math>

<math>~\biggl( \frac{R_\mathrm{ad}}{R_\mathrm{norm}} \biggr)^{-3} = \biggl[ 5^3 \biggl( \frac{4\pi}{3} \biggr)^{3-3\gamma_g}\biggr]^{1/(4-3\gamma_g)} </math>

<math>~\frac{c^2_\mathrm{ad}}{c^2_\mathrm{norm}}</math>

<math>~=</math>

<math>~\frac{P_\mathrm{ad} ~\rho_\mathrm{norm}}{P_\mathrm{norm} ~\rho_\mathrm{ad}} = \frac{3}{4\pi} \biggl[ \biggl( \frac{3\cdot 5^3}{4\pi} \biggr)^{\gamma_g-1} \biggr]^{1/(4-3\gamma_g )} </math>

Multiplying through the virial equilibrium expression by <math>~(R_\mathrm{norm}/R_\mathrm{ad})^4</math> gives,

<math>~\chi_\mathrm{ad}^4 - \frac{1}{\Pi_\mathrm{ad}} \biggl( \frac{\mathfrak{f}_A}{\mathfrak{f}_M^{\gamma_g}} \biggr) \chi_\mathrm{ad}^{4-3\gamma_g} + \frac{1}{\Pi_\mathrm{ad}} \biggl( \frac{\mathfrak{f}_W}{\mathfrak{f}_M^2} \biggr) </math>

<math>~=</math>

<math>~0 \, ,</math>

where,

<math>~\chi_\mathrm{ad}</math>

<math>~\equiv</math>

<math>~\frac{R_\mathrm{eq}}{R_\mathrm{ad}} \, ,</math>

<math>~\Pi_\mathrm{ad}</math>

<math>~\equiv</math>

<math>~\frac{P_\mathrm{e}}{P_\mathrm{ad}} \, .</math>

P-V Diagram for Unity Form Factors

Writing the coefficient, <math>B</math>, in terms of the average sound speed and setting the radial scale factor equal to the equilibrium radius of an isolated adiabatic sphere, that is, setting,

<math> R_0 = \frac{GM}{5\bar{c_s}^2} \, , </math>

the equation governing the radii of adiabatic equilibrium states becomes,

<math> \chi^4 - \frac{1}{\Pi_a} \chi^{(4-3\gamma_g)} + \frac{1}{\Pi_a} = 0 \, , </math>

where,

<math> \Pi_a \equiv \frac{4\pi P_e G^3 M^2}{3\cdot 5^3 \bar{c_s}^8} \, . </math>

As in the isothermal case, for a given choice of configuration mass and sound speed, this parameter, <math>\Pi_a</math>, can be viewed as a dimensionless external pressure. Alternatively, for a given choice of <math>P_e</math> and <math>\bar{c_s}</math>, <math>\Pi_a^{1/2}</math> can represent a dimensionless mass; or, for a given choice of <math>M</math> and <math>P_e</math>, <math>\Pi_a^{-1/8}</math> can represent a dimensionless sound speed. Here we will view it as a dimensionless external pressure.

Unlike the isothermal case, for an arbitrary value of the adiabatic exponent, <math>\gamma_g</math>, it isn't possible to invert this equation to obtain an analytic expression for <math>\chi</math> as a function of <math>\Pi_a</math>. But we can straightforwardly solve for <math>\Pi_a</math> as a function of <math>\chi</math>. The solution is,

<math> \Pi_a = \frac{\chi^{(4- 3\gamma_g)} - 1}{\chi^4} \, . </math>

For physically relevant solutions, both <math>\chi</math> and <math>\Pi_a</math> must be nonnegative. Hence, as is illustrated by the curves in Figure 4, the physically allowable range of equilibrium radii is,

<math> 1 \le \chi \le \infty \, ~~~~~\mathrm{for}~ \gamma_g < 4/3 \, ; </math>

<math> 0 < \chi \le 1 \, ~~~~~~\mathrm{for}~ \gamma_g > 4/3 \, . </math>

Figure 4: Equilibrium Adiabatic P-V Diagram

The curves trace out the function,

<math> \Pi_a = (\chi^{4-3\gamma_g} - 1)/\chi^4 \, , </math>

for six different values of <math>\gamma_g</math> (<math>2, ~5/3, ~7/5, ~6/5, ~1, ~2/3</math>, as labeled) and show the dimensionless external pressure, <math>\Pi_a</math>, that is required to construct a nonrotating, self-gravitating, uniform density, adiabatic sphere with an equilibrium radius <math>\chi</math>. The mathematical solution becomes unphysical wherever the pressure becomes negative.

The solid red curve, drawn for the case <math>\gamma_g = 1</math>, is identical to the solid black (isothermal) curve displayed above in Figure 1.

Equilibrium Adiabatic P-R Diagram

Each of the <math>\Pi_a(\chi)</math> curves drawn in Figure 4 exhibits an extremum. In each case this extremum occurs at a configuration radius, <math>\chi_\mathrm{extreme}</math>, given by,

<math> \frac{\partial\Pi_a}{\partial\chi} = 0 \, , </math>

that is, where,

<math> 4 - 3\gamma_g \chi^{4-3\gamma_g} = 0 ~~~~\Rightarrow ~~~~~ \chi_\mathrm{extreme} = \biggl[ \frac{4}{3\gamma_g} \biggr]^{1/(4-3\gamma_g)} \, . </math>

For each value of <math>\gamma_g</math>, the corresponding dimensionless pressure is,

<math> \Pi_a \biggr|_\mathrm{extreme} = \biggl(\frac{4}{3\gamma} - 1 \biggr) \biggl[ \frac{3\gamma_g}{4} \biggr]^{4/(4-3\gamma_g)} \, . </math>

Note, first, that for <math>\gamma_g > 4/3</math>, an equilibrium configuration with a positive radius can be constructed for all physically realistic — that is, for all positive — values of <math>\Pi_a</math>. Also, consistent with the behavior of the curves shown in Figure 4, the extremum arises in the regime of physically relevant — i.e., positive — pressures only for values of <math>\gamma_g < 4/3</math>; and in each case it represents a maximum limiting pressure.

Maximum Mass

<math>n=5</math> Polytropic

When <math>\gamma_a = 6/5</math> — which corresponds to an <math>n=5</math> polytropic configuration — we obtain,

<math> \Pi_\mathrm{max} = \Pi_a\biggr|_\mathrm{extreme}^{(\gamma_g = 6/5)} = \biggl( \frac{3^{18}}{2^{10}\cdot 5^{10}} \biggr) \, , </math>

which corresponds to a maximum mass for pressure-bounded <math>n=5</math> polytropic configurations of,

<math>M_\mathrm{max} = \Pi_\mathrm{max}^{1/2} \biggl(\frac{3\cdot 5^3}{2^2\pi} \biggr)^{1/2} \biggl( \frac{\bar{c_s}^8}{G^3 P_e} \biggr)^{1/2} = \biggl(\frac{3^{19}}{2^{12}\cdot 5^{7}\pi} \biggr)^{1/2} \biggl( \frac{\bar{c_s}^8}{G^3 P_e} \biggr)^{1/2} \, .</math>

This result can be compared to other determinations of the Bonnor-Ebert mass limit.


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation