Difference between revisions of "User:Tohline/SSC/UniformDensity"

From VistrailsWiki
Jump to navigation Jump to search
(Reorganize presentation of uniform-density solution)
(Reorganize introduction and subsection headings after writing introductory paragraph for tables of content)
Line 1: Line 1:
<!-- __FORCETOC__ will force the creation of a Table of Contents -->
<!-- __FORCETOC__ will force the creation of a Table of Contents -->
<!-- __NOTOC__ will force TOC off -->
<!-- __NOTOC__ will force TOC off -->
=Spherically Symmetric Configurations (Stability &#8212; Part III)=
=The Stability of Uniform-Density Spheres=
{{LSU_HBook_header}}
{{LSU_HBook_header}}
[[Image:LSU_Stable.animated.gif|74px|left]]
Suppose we now want to study the '''stability''' of one of the spherically symmetric, equilibrium structures that have been derived elsewhere.  The [http://www.vistrails.org/index.php/User:Tohline/SSC/Perturbations identified set of simplified, time-dependent governing equations] will tell us how the configuration will respond to an applied radial (''i.e.,'' spherically symmetric) perturbation that pushes the configuration slightly away from its initial equilibrium state.


==The Eigenvalue Problem==
==The Eigenvalue Problem==
Line 127: Line 123:
</table>
</table>
</div>
</div>
Correspondence with our derived equation becomes clear by appreciating that Christy's <math>~x \equiv r_0/R</math> and that,
<div align="center">
<math>GM(x) = g_0 r_0^2 \, ,</math>
</div>
hence,
<div align="center">
<math>V(x) \rightarrow \frac{g_0 \rho_0 r_0}{P_0} \, .</math>
</div>


==Uniform-Density Configuration==
 
==Properties of the Equilibrium Configuration==


=== Our Setup===
=== Our Setup===

Revision as of 03:00, 14 June 2015

The Stability of Uniform-Density Spheres

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

The Eigenvalue Problem

Our Approach

As has been derived in an accompanying discussion, the second-order ODE that defines the relevant Eigenvalue problem is,

<math> \frac{d^2x}{d\chi_0^2} + \biggl[\frac{4}{\chi_0} - \biggl(\frac{\rho_0}{\rho_c}\biggr) \biggl(\frac{P_0}{P_c}\biggr)^{-1} \biggl(\frac{g_0}{g_\mathrm{SSC}}\biggr) \biggr] \frac{dx}{d\chi_0} + \biggl(\frac{\rho_0}{\rho_c}\biggr) \biggl(\frac{P_0}{P_c}\biggr)^{-1} \biggl(\frac{1}{\gamma_\mathrm{g}} \biggr)\biggl[\tau_\mathrm{SSC}^2 \omega^2 + (4 - 3\gamma_\mathrm{g})\biggl(\frac{g_0}{g_\mathrm{SSC}}\biggr) \frac{1}{\chi_0} \biggr] x = 0 . </math>

where the dimensionless radius,

<math> \chi_0 \equiv \frac{r_0}{R} , </math>

the characteristic time for dynamical oscillations in spherically symmetric configurations (SSC) is,

<math> \tau_\mathrm{SSC} \equiv \biggl[ \frac{R^2 \rho_c}{P_c} \biggr]^{1/2} , </math>

and the characteristic gravitational acceleration is,

<math> g_\mathrm{SSC} \equiv \frac{P_c}{R \rho_c} . </math>

The Approach Taken by Sterne (1937)

T. E. Sterne (1937) begins his analysis by deriving the

Adiabatic Wave (or Radial Pulsation) Equation

LSU Key.png

<math>~ \frac{d^2x}{dr_0^2} + \biggl[\frac{4}{r_0} - \biggl(\frac{g_0 \rho_0}{P_0}\biggr) \biggr] \frac{dx}{dr_0} + \biggl(\frac{\rho_0}{\gamma_\mathrm{g} P_0} \biggr)\biggl[\omega^2 + (4 - 3\gamma_\mathrm{g})\frac{g_0}{r_0} \biggr] x = 0 </math>

in a manner explicitly designed to reproduce Eddington's pulsation equation — it appears as equation (1.8) in Sterne's paper — and, along with it, the surface boundary condition,

<math>~ r_0 \frac{d\ln x}{dr_0}</math>

<math>~=</math>

<math>~\frac{1}{\gamma_g} \biggl( 4 - 3\gamma_g + \frac{\omega^2 R^3}{GM_\mathrm{tot}}\biggr) </math>        at         <math>~r_0 = R \, ,</math>

which appears in Sterne's paper as equation (1.9). Then, as shown in the following paragraph extracted directly from his paper, Sterne (1937) rewrites both of these expressions in, what he considers to be, "more convenient forms."

Paragraph extracted from T. E. Sterne (1937)

"Modes of Radial Oscillation"

Monthly Notices of the Royal Astronomical Society, vol. 97, pp. 582 - © Royal Astronomical Society

Sterne (1937)

Notation:

Sterne's


  Ours


<math>~\xi_0 = Rx</math>   <math>~r_0</math>
<math>~\xi_1</math>   <math>~x</math>
<math>~n^2</math>   <math>~\omega^2</math>
<math>~\alpha</math>   <math>~3-4/\gamma_g</math>
<math>~\mu</math>   <math>~g_0 \rho_0 r_0/P_0</math>
<math>~g_0 R^2</math>   <math>~GM_\mathrm{tot}</math>


Properties of the Equilibrium Configuration

Our Setup

From our derived structure of a uniform-density sphere, in terms of the configuration's radius <math>R</math> and mass <math>M</math>, the central pressure and density are, respectively,

<math>P_c = \frac{3G}{8\pi}\biggl( \frac{M^2}{R^4} \biggr) </math> ,

and

<math>\rho_c = \frac{3M}{4\pi R^3} </math> .

Hence the characteristic time and acceleration are, respectively,

<math> \tau_\mathrm{SSC} = \biggl[ \frac{R^2 \rho_c}{P_c} \biggr]^{1/2} = \biggl[ \frac{2R^3 }{GM} \biggr]^{1/2} = \biggl[ \frac{3}{2\pi G\rho_c} \biggr]^{1/2}, </math>

and,

<math> g_\mathrm{SSC} = \frac{P_c}{R \rho_c} = \biggl( \frac{GM}{2R^2} \biggr) . </math>

The required functions are,

  • Density:

<math>\frac{\rho_0(r_0)}{\rho_c} = 1 </math> ;

  • Pressure:

<math>\frac{P_0(r_0)}{P_c} = 1 - \chi_0^2 </math> ;

  • Gravitational acceleration:

<math> \frac{g_0(r_0)}{g_\mathrm{SSC}} = 2\chi_0 . </math>

So our desired Eigenvalues and Eigenvectors will be solutions to the following ODE:

<math> \frac{1}{(1 - \chi_0^2)} \biggl\{ (1 - \chi_0^2) \frac{d^2x}{d\chi_0^2} + \frac{4}{\chi_0}\biggl[1 - \frac{3}{2}\chi_0^2 \biggr] \frac{dx}{d\chi_0} + \frac{1}{\gamma_\mathrm{g}} \biggl[\tau_\mathrm{SSC}^2 \omega^2 + 2 (4 - 3\gamma_\mathrm{g}) \biggr] x \biggr\} = 0 . </math>

Setup as Presented by Sterne (1937)

Analytic Solution

First few lowest-order modes

  • Mode 0:
<math>x_0 = \mathrm{constant}</math>, in which case,

<math> \omega_0^2 = - 2(4 - 3\gamma_\mathrm{g})\biggl[ \frac{2\pi G\rho_c}{3} \biggr] = 4\pi G \rho_c \biggl[ \gamma_\mathrm{g}- \frac{4}{3} \biggr] </math>

  • Mode 1:
<math>x_1 = a + b\chi_0^2</math>, in which case,

<math> \frac{dx}{d\chi_0} = 2b\chi_0; ~~~~ \frac{d^2 x}{d\chi_0^2} = 2b; </math>

<math> \frac{1}{(1 - \chi_0^2)} \biggl\{ 2b (1 - \chi_0^2) + 8b \biggl[1 - \frac{3}{2}\chi_0^2 \biggr] + A_1 \biggl(1 + \frac{b}{a}\chi_0^2 \biggr) \biggr\} = 0 , </math>

where,

<math> A_1 \equiv \frac{a}{\gamma_\mathrm{g}}\biggl[ \biggl( \frac{3}{2\pi G\rho_c} \biggr) \omega_1^2+ 2(4 - 3\gamma_\mathrm{g}) \biggr] . </math>

Therefore,

<math> (A_1 + 10b) + \biggl[ \biggl(\frac{b}{a}\biggr) A_1 - 14b \biggr] \chi_0^2 = 0 , </math>

<math> \Rightarrow ~~~~~ A_1 = - 10b ~~~~~\mathrm{and} ~~~~~ A_1 = 14a </math>

<math> \Rightarrow ~~~~~ \frac{b}{a} = -\frac{7}{5} ~~~~~\mathrm{and} ~~~~~ \frac{A_1}{a} = 14 = \frac{1}{\gamma_\mathrm{g}}\biggl[ \biggl( \frac{3}{2\pi G\rho_c} \biggr) \omega_1^2+ 2(4 - 3\gamma_\mathrm{g}) \biggr] .

</math>

Hence,

<math> \biggl( \frac{3}{2\pi G\rho_c} \biggr) \omega_1^2 = 20\gamma_\mathrm{g} -8 </math>

<math> \Rightarrow ~~~~~ \omega_1^2 = \frac{2}{3}\biggl( 4\pi G\rho_c \biggr) (5\gamma_\mathrm{g} -2) </math>

and, to within an arbitrary normalization factor,

<math> x_1 = 1 - \frac{7}{5}\chi_0^2 . </math>


Sterne's General Solution

n=1 Polytrope

This discussion has been moved to another chapter.


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation