Difference between revisions of "User:Tohline/SSC/UniformDensity"

From VistrailsWiki
Jump to navigation Jump to search
(→‎Sterne (1937): Finished detailing notation)
(Reorganize presentation of uniform-density solution)
Line 9: Line 9:


==The Eigenvalue Problem==
==The Eigenvalue Problem==
===Our Approach===
As has been derived in [http://www.vistrails.org/index.php/User:Tohline/SSC/Perturbations#Eigen_Value_Problem an accompanying discussion], the second-order ODE that defines the relevant Eigenvalue problem is,
As has been derived in [http://www.vistrails.org/index.php/User:Tohline/SSC/Perturbations#Eigen_Value_Problem an accompanying discussion], the second-order ODE that defines the relevant Eigenvalue problem is,


Line 35: Line 36:
</div>
</div>


==Uniform-Density Configuration==
===The Approach Taken by Sterne (1937)===
 
===Sterne (1937)===
[http://adsabs.harvard.edu/abs/1937MNRAS..97..582S T. E. Sterne (1937)] begins his analysis by deriving the
[http://adsabs.harvard.edu/abs/1937MNRAS..97..582S T. E. Sterne (1937)] begins his analysis by deriving the


Line 137: Line 136:
</div>
</div>


===Setup===
==Uniform-Density Configuration==
 
=== Our Setup===
From our derived [[User:Tohline/SSC/Structure/Polytropes#n_.3D_0_Polytrope|structure of a uniform-density sphere]], in terms of the configuration's radius <math>R</math> and mass <math>M</math>, the central pressure and density are, respectively,
From our derived [[User:Tohline/SSC/Structure/Polytropes#n_.3D_0_Polytrope|structure of a uniform-density sphere]], in terms of the configuration's radius <math>R</math> and mass <math>M</math>, the central pressure and density are, respectively,
<div align="center">
<div align="center">
Line 185: Line 186:
</math><br />
</math><br />
</div>
</div>
===Setup as Presented by Sterne (1937)===
==Analytic Solution==


===First few lowest-order modes===
===First few lowest-order modes===
Line 251: Line 256:
</div>
</div>
<br />
<br />
===Sterne's General Solution===


==n=1 Polytrope==
==n=1 Polytrope==

Revision as of 23:57, 13 June 2015

Spherically Symmetric Configurations (Stability — Part III)

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |
LSU Stable.animated.gif

Suppose we now want to study the stability of one of the spherically symmetric, equilibrium structures that have been derived elsewhere. The identified set of simplified, time-dependent governing equations will tell us how the configuration will respond to an applied radial (i.e., spherically symmetric) perturbation that pushes the configuration slightly away from its initial equilibrium state.


The Eigenvalue Problem

Our Approach

As has been derived in an accompanying discussion, the second-order ODE that defines the relevant Eigenvalue problem is,

<math> \frac{d^2x}{d\chi_0^2} + \biggl[\frac{4}{\chi_0} - \biggl(\frac{\rho_0}{\rho_c}\biggr) \biggl(\frac{P_0}{P_c}\biggr)^{-1} \biggl(\frac{g_0}{g_\mathrm{SSC}}\biggr) \biggr] \frac{dx}{d\chi_0} + \biggl(\frac{\rho_0}{\rho_c}\biggr) \biggl(\frac{P_0}{P_c}\biggr)^{-1} \biggl(\frac{1}{\gamma_\mathrm{g}} \biggr)\biggl[\tau_\mathrm{SSC}^2 \omega^2 + (4 - 3\gamma_\mathrm{g})\biggl(\frac{g_0}{g_\mathrm{SSC}}\biggr) \frac{1}{\chi_0} \biggr] x = 0 . </math>

where the dimensionless radius,

<math> \chi_0 \equiv \frac{r_0}{R} , </math>

the characteristic time for dynamical oscillations in spherically symmetric configurations (SSC) is,

<math> \tau_\mathrm{SSC} \equiv \biggl[ \frac{R^2 \rho_c}{P_c} \biggr]^{1/2} , </math>

and the characteristic gravitational acceleration is,

<math> g_\mathrm{SSC} \equiv \frac{P_c}{R \rho_c} . </math>

The Approach Taken by Sterne (1937)

T. E. Sterne (1937) begins his analysis by deriving the

Adiabatic Wave (or Radial Pulsation) Equation

LSU Key.png

<math>~ \frac{d^2x}{dr_0^2} + \biggl[\frac{4}{r_0} - \biggl(\frac{g_0 \rho_0}{P_0}\biggr) \biggr] \frac{dx}{dr_0} + \biggl(\frac{\rho_0}{\gamma_\mathrm{g} P_0} \biggr)\biggl[\omega^2 + (4 - 3\gamma_\mathrm{g})\frac{g_0}{r_0} \biggr] x = 0 </math>

in a manner explicitly designed to reproduce Eddington's pulsation equation — it appears as equation (1.8) in Sterne's paper — and, along with it, the surface boundary condition,

<math>~ r_0 \frac{d\ln x}{dr_0}</math>

<math>~=</math>

<math>~\frac{1}{\gamma_g} \biggl( 4 - 3\gamma_g + \frac{\omega^2 R^3}{GM_\mathrm{tot}}\biggr) </math>        at         <math>~r_0 = R \, ,</math>

which appears in Sterne's paper as equation (1.9). Then, as shown in the following paragraph extracted directly from his paper, Sterne (1937) rewrites both of these expressions in, what he considers to be, "more convenient forms."

Paragraph extracted from T. E. Sterne (1937)

"Modes of Radial Oscillation"

Monthly Notices of the Royal Astronomical Society, vol. 97, pp. 582 - © Royal Astronomical Society

Sterne (1937)

Notation:

Sterne's


  Ours


<math>~\xi_0 = Rx</math>   <math>~r_0</math>
<math>~\xi_1</math>   <math>~x</math>
<math>~n^2</math>   <math>~\omega^2</math>
<math>~\alpha</math>   <math>~3-4/\gamma_g</math>
<math>~\mu</math>   <math>~g_0 \rho_0 r_0/P_0</math>
<math>~g_0 R^2</math>   <math>~GM_\mathrm{tot}</math>

Correspondence with our derived equation becomes clear by appreciating that Christy's <math>~x \equiv r_0/R</math> and that,

<math>GM(x) = g_0 r_0^2 \, ,</math>

hence,

<math>V(x) \rightarrow \frac{g_0 \rho_0 r_0}{P_0} \, .</math>

Uniform-Density Configuration

Our Setup

From our derived structure of a uniform-density sphere, in terms of the configuration's radius <math>R</math> and mass <math>M</math>, the central pressure and density are, respectively,

<math>P_c = \frac{3G}{8\pi}\biggl( \frac{M^2}{R^4} \biggr) </math> ,

and

<math>\rho_c = \frac{3M}{4\pi R^3} </math> .

Hence the characteristic time and acceleration are, respectively,

<math> \tau_\mathrm{SSC} = \biggl[ \frac{R^2 \rho_c}{P_c} \biggr]^{1/2} = \biggl[ \frac{2R^3 }{GM} \biggr]^{1/2} = \biggl[ \frac{3}{2\pi G\rho_c} \biggr]^{1/2}, </math>

and,

<math> g_\mathrm{SSC} = \frac{P_c}{R \rho_c} = \biggl( \frac{GM}{2R^2} \biggr) . </math>

The required functions are,

  • Density:

<math>\frac{\rho_0(r_0)}{\rho_c} = 1 </math> ;

  • Pressure:

<math>\frac{P_0(r_0)}{P_c} = 1 - \chi_0^2 </math> ;

  • Gravitational acceleration:

<math> \frac{g_0(r_0)}{g_\mathrm{SSC}} = 2\chi_0 . </math>

So our desired Eigenvalues and Eigenvectors will be solutions to the following ODE:

<math> \frac{1}{(1 - \chi_0^2)} \biggl\{ (1 - \chi_0^2) \frac{d^2x}{d\chi_0^2} + \frac{4}{\chi_0}\biggl[1 - \frac{3}{2}\chi_0^2 \biggr] \frac{dx}{d\chi_0} + \frac{1}{\gamma_\mathrm{g}} \biggl[\tau_\mathrm{SSC}^2 \omega^2 + 2 (4 - 3\gamma_\mathrm{g}) \biggr] x \biggr\} = 0 . </math>

Setup as Presented by Sterne (1937)

Analytic Solution

First few lowest-order modes

  • Mode 0:
<math>x_0 = \mathrm{constant}</math>, in which case,

<math> \omega_0^2 = - 2(4 - 3\gamma_\mathrm{g})\biggl[ \frac{2\pi G\rho_c}{3} \biggr] = 4\pi G \rho_c \biggl[ \gamma_\mathrm{g}- \frac{4}{3} \biggr] </math>

  • Mode 1:
<math>x_1 = a + b\chi_0^2</math>, in which case,

<math> \frac{dx}{d\chi_0} = 2b\chi_0; ~~~~ \frac{d^2 x}{d\chi_0^2} = 2b; </math>

<math> \frac{1}{(1 - \chi_0^2)} \biggl\{ 2b (1 - \chi_0^2) + 8b \biggl[1 - \frac{3}{2}\chi_0^2 \biggr] + A_1 \biggl(1 + \frac{b}{a}\chi_0^2 \biggr) \biggr\} = 0 , </math>

where,

<math> A_1 \equiv \frac{a}{\gamma_\mathrm{g}}\biggl[ \biggl( \frac{3}{2\pi G\rho_c} \biggr) \omega_1^2+ 2(4 - 3\gamma_\mathrm{g}) \biggr] . </math>

Therefore,

<math> (A_1 + 10b) + \biggl[ \biggl(\frac{b}{a}\biggr) A_1 - 14b \biggr] \chi_0^2 = 0 , </math>

<math> \Rightarrow ~~~~~ A_1 = - 10b ~~~~~\mathrm{and} ~~~~~ A_1 = 14a </math>

<math> \Rightarrow ~~~~~ \frac{b}{a} = -\frac{7}{5} ~~~~~\mathrm{and} ~~~~~ \frac{A_1}{a} = 14 = \frac{1}{\gamma_\mathrm{g}}\biggl[ \biggl( \frac{3}{2\pi G\rho_c} \biggr) \omega_1^2+ 2(4 - 3\gamma_\mathrm{g}) \biggr] .

</math>

Hence,

<math> \biggl( \frac{3}{2\pi G\rho_c} \biggr) \omega_1^2 = 20\gamma_\mathrm{g} -8 </math>

<math> \Rightarrow ~~~~~ \omega_1^2 = \frac{2}{3}\biggl( 4\pi G\rho_c \biggr) (5\gamma_\mathrm{g} -2) </math>

and, to within an arbitrary normalization factor,

<math> x_1 = 1 - \frac{7}{5}\chi_0^2 . </math>


Sterne's General Solution

n=1 Polytrope

This discussion has been moved to another chapter.


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation