Difference between revisions of "User:Tohline/Appendix/Ramblings/PPTori"

From VistrailsWiki
Jump to navigation Jump to search
(→‎Cubic Equation Solution: Begin working through Wolfram's cubic equation solution)
Line 97: Line 97:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\Rightarrow ~~~~ 2x^3 \pm x^2 \mp (\beta\eta)^2</math>
<math>~\Rightarrow ~~~~ x^3 \pm \tfrac{1}{2}x^2 \mp \tfrac{1}{2}(\beta\eta)^2</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 108: Line 108:
</table>
</table>
</div>
</div>
Following [http://mathworld.wolfram.com/CubicFormula.html Wolfram's discussion of the cubic formula], we should view this expression as a specific case of the general formula,
<div align="center">
<math>~x^3 + a_2x^2 + a_1x + a_0 = 0 \, .</math>
</div>
Doing this &#8212; and focusing, first, on the ''superior'' sign convention &#8212; we see that the coefficients that lead to our specific cubic equation are:
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~a_2</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\tfrac{1}{2} \, ,</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~a_1</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~0 \, ,</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~a_0</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~- \tfrac{1}{2}(\beta\eta)^2 \, .</math>
  </td>
</tr>
</table>
</div>
As is detailed in equations (54) - (56) of [http://mathworld.wolfram.com/CubicFormula.html Wolfram's discussion of the cubic formula], the three roots of any cubic equation are:
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~x_1</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
-\frac{1}{3}a_2 + (S + T) \, ,
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~x_2</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
-\frac{1}{3}a_2 - \frac{1}{2} (S + T) + \frac{1}{2} \it{i} \sqrt{3} (S-T)\, ,
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~x_3</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
-\frac{1}{3}a_2 - \frac{1}{2} (S + T) - \frac{1}{2} \it{i} \sqrt{3} (S-T)\, ,
</math>
  </td>
</tr>
</table>
</div>
where,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~S</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~[R + \sqrt{D}]^{1/3} \, ,</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~T</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~[R - \sqrt{D}]^{1/3} \, ,</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~D</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~Q^3 + R^2 \, .</math>
  </td>
</tr>
</table>
</div>
Applying Wolfram's definitions of the <math>~Q</math> and <math>~R</math> parameters to our particular problem gives,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~Q</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~\frac{3a_1 - a_2^2}{3^2} = -\biggl(\frac{a_2}{3}\biggr)^2 = - \frac{1}{2^2\cdot 3^2} \, ;</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~R</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~\frac{3^2a_2 a_1 - 3^3a_0 - 2a_2^3}{2\cdot 3^3}
= - \frac{1}{2\cdot 3^3} \biggl[ -\frac{3^3}{2}(\beta\eta)^2  + \frac{1}{2^2} \biggr] </math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- \frac{1}{2^3\cdot 3^3} \biggl[ 1-2\cdot 3^3(\beta\eta)^2 \biggr]\, . </math>
  </td>
</tr>
</table>
</div>
Hence,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~2^6\cdot 3^6D</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~[ 1-2\cdot 3^3(\beta\eta)^2 ]^2-1 \, ;</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~2\cdot 3S</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~[2^3\cdot 3^3R + \sqrt{2^6\cdot 3^6D}]^{1/3}  </math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\biggl\{ \sqrt{[ 1-2\cdot 3^3(\beta\eta)^2 ]^2-1}
+ \biggl[ 2\cdot 3^3(\beta\eta)^2 -1\biggr] \biggr\}^{1/3}  </math>
  </td>
</tr>
</table>
</div>
<!-- COMMENT OUT DEVELOPMENT FROM VANDERBILT NOTES ...


Following [http://www.math.vanderbilt.edu/~schectex/courses/cubic/ the online Vanderbilt notes], we should view this expression as a specific case of the general formula,
Following [http://www.math.vanderbilt.edu/~schectex/courses/cubic/ the online Vanderbilt notes], we should view this expression as a specific case of the general formula,
Line 299: Line 527:
</div>
</div>


On the other hand, when <math>~\eta = 1</math> (''i.e.,'' at the surface of the torus), we see that <math>~Q = 1 - 54\beta</math>, in which case,
On the other hand, when <math>~\eta = 1</math> (''i.e.,'' at the surface of the torus), we see that <math>~Q = 1 - 2\cdot 3^3\beta^2</math>, in which case,
<div align="center">
<math>~Q^2 -1 = 2^2\cdot 3^6\beta^4 - 2^2\cdot 3^3\beta^2 = 2^2\cdot 3^3\beta^2 (3^3\beta^2 -1) \, ,</math>
</div>
 
and,  


<div align="center">
<div align="center">
Line 313: Line 546:
   <td align="left">
   <td align="left">
<math>~
<math>~
[Q + (Q^2 - 1)^{1/2} ]^{1/3} + [Q - (Q^2 - 1)^{1/2} ]^{1/3} \mp 1 \, ,
[Q + (Q^2 - 1)^{1/2} ]^{1/3} + [Q - (Q^2 - 1)^{1/2} ]^{1/3} \mp 1
</math>
</math>
   </td>
   </td>
Line 320: Line 553:
</div>
</div>


END COMMENTS ON VANDERBILT NOTES --!>


===Analytically Prescribed Eigenvector===
===Analytically Prescribed Eigenvector===

Revision as of 22:36, 19 February 2016

Stability Analyses of PP Tori

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

As has been summarized in an accompanying chapter — also see our related detailed notes — we have been trying to understand why unstable nonaxisymmetric eigenvectors have the shapes that they do in rotating toroidal configurations. For any azimuthal mode, <math>~m</math>, we are referring both to the radial dependence of the distortion amplitude, <math>~f_m(\varpi)</math>, and the radial dependence of the phase function, <math>~\phi_m(\varpi)</math> — the latter is what the Imamura and Hadley collaboration refer to as a "constant phase locus." Some old videos showing the development over time of various self-gravitating "constant phase loci" can be found here; these videos supplement the published work of Woodward, Tohline & Hachisu (1994).

Here, we focus specifically on instabilities that arise in so-called (non-self-gravitating) Papaloizou-Pringle tori and will draw heavily from two publications: (1) Papaloizou & Pringle (1987), MNRAS, 225, 267The dynamical stability of differentially rotating discs.   III. — hereafter, PPIII — and (2) Blaes (1985), MNRAS, 216, 553Oscillations of slender tori.

PP III

Figure 2 extracted without modification from p. 274 of J. C. B. Papaloizou & J. E. Pringle (1987)

"The Dynamical Stability of Differentially Rotating Discs.   III"

MNRAS, vol. 225, pp. 267-283 © The Royal Astronomical Society

Figure 2 from PP III


Blaes85

His Notation

Blaes (1985) adopts a polytropic equation of state,

<math>~\frac{\rho}{\rho_c} = \Theta_H^n \, ,</math>

which gives rise to (slim tori) equilibrium structures for which (see his equation 1.3),

<math>~\Theta_H</math>

<math>~=</math>

<math>~1 - \frac{1}{\beta^2}\biggl[x^2 + x^3(3\cos\theta - \cos^3\theta) + \mathcal{O}(x^4) \biggr] \, ,</math>

where, the (constant) model parameter,

<math>\beta \equiv \frac{(2n)^{1/2}}{\mathcal{M}_0} \, ,</math>

and <math>~\mathcal{M}_0</math> is the Mach number of the rotational velocity at the torus center. Blaes then adopts a related parameter that is constant on isobaric surfaces, namely,

<math>\eta^2 \equiv 1 - \Theta_H \, ,</math>

which is unity at the surface of the torus and which goes to zero at the cross-sectional center of the torus. Notice that <math>~\eta</math> tracks the "radial" coordinate that measures the distance from the center of the torus; in particular, keeping only the leading-order term in <math>~x</math>, there is a simple linear relationship between <math>~\eta</math> and <math>~x</math>, namely,

<math>~\eta</math>

<math>~=</math>

<math>~[1 - \Theta_H]^{1/2} \approx \frac{x}{\beta} \, .</math>

Cubic Equation Solution

For later use, let's invert the cubic relation to obtain a more broadly applicable <math>~x(\eta)</math> function. Because we are only interested in radial profiles in the equatorial plane — that is, only for the values of <math>~\theta = 0</math> or <math>~\theta=\pi</math> — the relation to be inverted is,

<math>~x^2 \pm 2 x^3</math>

<math>~=</math>

<math>~(\beta\eta)^2</math>

<math>~\Rightarrow ~~~~ x^3 \pm \tfrac{1}{2}x^2 \mp \tfrac{1}{2}(\beta\eta)^2</math>

<math>~=</math>

<math>~0 \, .</math>

Following Wolfram's discussion of the cubic formula, we should view this expression as a specific case of the general formula,

<math>~x^3 + a_2x^2 + a_1x + a_0 = 0 \, .</math>


Doing this — and focusing, first, on the superior sign convention — we see that the coefficients that lead to our specific cubic equation are:

<math>~a_2</math>

<math>~=</math>

<math>~\tfrac{1}{2} \, ,</math>

<math>~a_1</math>

<math>~=</math>

<math>~0 \, ,</math>

<math>~a_0</math>

<math>~=</math>

<math>~- \tfrac{1}{2}(\beta\eta)^2 \, .</math>

As is detailed in equations (54) - (56) of Wolfram's discussion of the cubic formula, the three roots of any cubic equation are:

<math>~x_1</math>

<math>~=</math>

<math>~ -\frac{1}{3}a_2 + (S + T) \, , </math>

<math>~x_2</math>

<math>~=</math>

<math>~ -\frac{1}{3}a_2 - \frac{1}{2} (S + T) + \frac{1}{2} \it{i} \sqrt{3} (S-T)\, , </math>

<math>~x_3</math>

<math>~=</math>

<math>~ -\frac{1}{3}a_2 - \frac{1}{2} (S + T) - \frac{1}{2} \it{i} \sqrt{3} (S-T)\, , </math>

where,

<math>~S</math>

<math>~\equiv</math>

<math>~[R + \sqrt{D}]^{1/3} \, ,</math>

<math>~T</math>

<math>~\equiv</math>

<math>~[R - \sqrt{D}]^{1/3} \, ,</math>

<math>~D</math>

<math>~\equiv</math>

<math>~Q^3 + R^2 \, .</math>

Applying Wolfram's definitions of the <math>~Q</math> and <math>~R</math> parameters to our particular problem gives,

<math>~Q</math>

<math>~\equiv</math>

<math>~\frac{3a_1 - a_2^2}{3^2} = -\biggl(\frac{a_2}{3}\biggr)^2 = - \frac{1}{2^2\cdot 3^2} \, ;</math>

<math>~R</math>

<math>~\equiv</math>

<math>~\frac{3^2a_2 a_1 - 3^3a_0 - 2a_2^3}{2\cdot 3^3} = - \frac{1}{2\cdot 3^3} \biggl[ -\frac{3^3}{2}(\beta\eta)^2 + \frac{1}{2^2} \biggr] </math>

 

<math>~=</math>

<math>~ - \frac{1}{2^3\cdot 3^3} \biggl[ 1-2\cdot 3^3(\beta\eta)^2 \biggr]\, . </math>

Hence,

<math>~2^6\cdot 3^6D</math>

<math>~=</math>

<math>~[ 1-2\cdot 3^3(\beta\eta)^2 ]^2-1 \, ;</math>

<math>~2\cdot 3S</math>

<math>~=</math>

<math>~[2^3\cdot 3^3R + \sqrt{2^6\cdot 3^6D}]^{1/3} </math>

 

<math>~=</math>

<math>~\biggl\{ \sqrt{[ 1-2\cdot 3^3(\beta\eta)^2 ]^2-1} + \biggl[ 2\cdot 3^3(\beta\eta)^2 -1\biggr] \biggr\}^{1/3} </math>