VisTrails Home

User:Tohline/Apps/WoodwardTohlineHachisu94

From VisTrailsWiki

Jump to: navigation, search

The Stability of Self-Gravitating Polytropic Tori

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

J. W. Woodward, J. E. Tohline, & I. Hachisu (1994; hereafter WTH94) used nonlinear numerical hydrodynamic techniques to examine the relative stability of self-gravitating, polytropic tori toward the development of nonaxisymmetric structure. The following pair of tables list key properties of the set of model tori that were examined: Table 5 gives characteristics of the initial models and Table 6 presents results ascertained from the numerical stability analyses.

Table extracted from J. W. Woodward, J. E. Tohline & I. Hachisu (1994)

"The Stability of Thick, Self-gravitating Disks in Protostellar Systems"

ApJ, vol. 420, pp. 247-267 © American Astronomical Society

Woodward, Tohline & Hachisu (1994, ApJ, 420, 247)

Woodward, Tohline & Hachisu (1994, ApJ, 420, 247)

Online Movies

Figure 1: Animation Sequences to Supplement Table 5 of WTH94

(click on security-lock icon or caption model name to go to YouTube)

Click for YouTube Video

Click for YouTube Video

Click for YouTube Video

Table 5, Model O13 Table 5, Model O14 Table 5, Model O15

Click for YouTube Video

Click for YouTube Video

Click for YouTube Video

Table 5, Model O16 Table 5, Model O17 Table 5, Model O18

Click for YouTube Video

Click for YouTube Video

Click for YouTube Video

Table 5, Model O22 Table 5, Model E29 Table 5, Model E17


 

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2019 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Context: | PGE | SR |
Appendices: | Equations | Variables | References | Binary Polytropes | Ramblings | Images | Images (2016 Layout) | ADS |

Personal tools