Difference between revisions of "User:Tohline/SSC/Virial/FormFactors"

From VistrailsWiki
Jump to navigation Jump to search
(→‎One Detailed Example (n = 5): Begin showing how appropriate integral gives M_r profile)
Line 50: Line 50:
Here we derive detailed expressions for the above subset of structural form factors in the case of spherically symmetric configurations that obey an <math>~n=5</math> polytropic equation of state.  The hope is that this will illustrate, in a clear and helpful manner, how the task of calculating form factors is to be carried out, in practice; and, in particular, to provide one nontrivial example for which analytic expressions are derivable.  This should simplify the task of debugging numerical algorithms that are designed to calculate structural form factors for more general cases that cannot be derived analytically.  The limits of integration will be specified in a general enough fashion that the resulting expressions can be applied, not only to the structures of ''isolated'' polytropes, but to [[User:Tohline/SSC/Virial/PolytropesSummary#Further_Evaluation_of_n_.3D_5_Polytropic_Structures|''pressure-truncated'' polytropes]] that are embedded in a hot, tenuous external medium and to the [[User:Tohline/SSC/Structure/BiPolytropes/Analytic5_1#Free_Energy|cores of bipolytropes]].
Here we derive detailed expressions for the above subset of structural form factors in the case of spherically symmetric configurations that obey an <math>~n=5</math> polytropic equation of state.  The hope is that this will illustrate, in a clear and helpful manner, how the task of calculating form factors is to be carried out, in practice; and, in particular, to provide one nontrivial example for which analytic expressions are derivable.  This should simplify the task of debugging numerical algorithms that are designed to calculate structural form factors for more general cases that cannot be derived analytically.  The limits of integration will be specified in a general enough fashion that the resulting expressions can be applied, not only to the structures of ''isolated'' polytropes, but to [[User:Tohline/SSC/Virial/PolytropesSummary#Further_Evaluation_of_n_.3D_5_Polytropic_Structures|''pressure-truncated'' polytropes]] that are embedded in a hot, tenuous external medium and to the [[User:Tohline/SSC/Structure/BiPolytropes/Analytic5_1#Free_Energy|cores of bipolytropes]].


===Key Foundations===
===Foundation===
We use the following normalizations, as drawn from [[User:Tohline/SphericallySymmetricConfigurations/Virial#Normalizations|our more general introductory discussion]]:
We use the following normalizations, as drawn from [[User:Tohline/SphericallySymmetricConfigurations/Virial#Normalizations|our more general introductory discussion]]:
<div align="center">
<div align="center">
Line 214: Line 214:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\frac{r}{R_\mathrm{norm}}</math>
<math>~r^\dagger \equiv \frac{r}{R_\mathrm{norm}}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 229: Line 229:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\frac{\rho}{\rho_\mathrm{norm}}</math>
<math>~\rho^\dagger \equiv \frac{\rho}{\rho_\mathrm{norm}}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 241: Line 241:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\frac{P}{P_\mathrm{norm}}</math>
<math>~P^\dagger \equiv \frac{P}{P_\mathrm{norm}}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 268: Line 268:
</table>
</table>
</div>
</div>
===Mass===
While we already know the expression for the <math>~M_r</math> profile, having copied it from our [[User:Tohline/SSC/Structure/Polytropes#.3D_5_Polytrope|discussion of detailed force-balanced models of ''isolated'' polytropes]], let's show how that profile can be derived by integrating over the density profile.  After employing the ''norm''-subscripted quantities, as defined above, to normalize the radial coordinate and the mass density in our [[User:Tohline/SphericallySymmetricConfigurations/Virial#Normalize|introductory discussion of the virial theorem]], we obtained the following integral defining the,
<font color="red">Normalized Mass:</font>
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~M_r(r^\dagger)  </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>
M_\mathrm{tot} \int_0^{r^\dagger}  3(r^\dagger)^2 \rho^\dagger dr^\dagger  \, .
</math>
  </td>
</tr>
</table>
</div>
Plugging in the profiles for <math>~r^\dagger</math> and <math>~\rho^\dagger</math>, and recognizing that,
<div align="center">
<math>~dr^\dagger = \biggl( \frac{\pi}{2^3\cdot 3^7} \biggr)^{1/2} d\xi \, ,</math>
</div>
gives, with the help of [http://integrals.wolfram.com/index.jsp Mathematica's Online Integrator], [[File:OnlineIntegral01.png|250px|right|Mathematica Integral]]
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\frac{M_r(\xi)}{M_\mathrm{tot} } </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>
3 \biggl( \frac{\pi}{2^3\cdot 3^7} \biggr)^{3/2} \biggl( \frac{2^3\cdot 3^6}{\pi} \biggr)^{3/2} 
\int_0^{\xi}  \xi^2 \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{-5/2} d\xi
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>
3 \biggl( \frac{1}{3} \biggr)^{3/2}
\biggl[ \frac{\xi^3}{3}\biggl(1+\frac{\xi^2}{3}\biggr)^{-3/2} \biggr]_0^{\xi}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>
\biggl[ \frac{\xi^2}{3}\biggl(1+\frac{\xi^2}{3}\biggr)^{-1}\biggr]^{3/2} \, .
</math>
  </td>
</tr>
</table>
</div>
As it should, this expression exactly matches the normalized <math>~M_r</math> profile shown above.
Alternatively, as has been laid out in our [[User:Tohline/SphericallySymmetricConfigurations/Virial#Summary_of_Normalized_Expressions|summary of normalized free-energy-relevant expressions]],
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\frac{M_r(x)}{M_\mathrm{tot}}  </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~ \biggl( \frac{\rho_c}{\bar\rho} \biggr)_\mathrm{eq} \biggl( \frac{M_\mathrm{limit}}{M_\mathrm{tot}} \biggr)
\int_0^{x}  3x^2 \biggl[ \frac{\rho(x)}{\rho_c} \biggr]  dx \, ,</math>
  </td>
</tr>
</table>
</div>




{{LSU_HBook_footer}}
{{LSU_HBook_footer}}

Revision as of 18:30, 3 January 2015


Structural Form Factors

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

As has been defined in a companion, introductory discussion, three key dimensionless structural form factors are:

<math>~\mathfrak{f}_M </math>

<math>~\equiv</math>

<math>~ \int_0^1 3\biggl[ \frac{\rho(x)}{\rho_c}\biggr] x^2 dx \, ,</math>

<math>~\mathfrak{f}_W</math>

<math>~\equiv</math>

<math>~ 3\cdot 5 \int_0^1 \biggl\{ \int_0^x \biggl[ \frac{\rho(x)}{\rho_c}\biggr] x^2 dx \biggr\} \biggl[ \frac{\rho(x)}{\rho_c}\biggr] x dx\, ,</math>

<math>~\mathfrak{f}_A</math>

<math>~\equiv</math>

<math>~ \int_0^1 3\biggl[ \frac{P(x)}{P_c}\biggr] x^2 dx \, ,</math>

where, <math>~x \equiv r/R_\mathrm{limit}</math>.

One Detailed Example (n = 5)

Here we derive detailed expressions for the above subset of structural form factors in the case of spherically symmetric configurations that obey an <math>~n=5</math> polytropic equation of state. The hope is that this will illustrate, in a clear and helpful manner, how the task of calculating form factors is to be carried out, in practice; and, in particular, to provide one nontrivial example for which analytic expressions are derivable. This should simplify the task of debugging numerical algorithms that are designed to calculate structural form factors for more general cases that cannot be derived analytically. The limits of integration will be specified in a general enough fashion that the resulting expressions can be applied, not only to the structures of isolated polytropes, but to pressure-truncated polytropes that are embedded in a hot, tenuous external medium and to the cores of bipolytropes.

Foundation

We use the following normalizations, as drawn from our more general introductory discussion:

Adopted Normalizations <math>~(n=5; ~\gamma=6/5)</math>

<math>~R_\mathrm{norm}</math>

<math>~\equiv</math>

<math>~\biggl( \frac{G}{K} \biggr)^{5/2} M_\mathrm{tot}^{2} </math>

<math>~P_\mathrm{norm}</math>

<math>~\equiv</math>

<math>~\biggl( \frac{K^{10}}{G^{9} M_\mathrm{tot}^{6}} \biggr) </math>


<math>~E_\mathrm{norm}</math>

<math>~\equiv</math>

<math>~ P_\mathrm{norm} R_\mathrm{norm}^3 = \biggl( \frac{K^5}{G^3} \biggr)^{1/2} </math>

<math>~\rho_\mathrm{norm}</math>

<math>~\equiv</math>

<math>~\frac{3M_\mathrm{tot}}{4\pi R_\mathrm{norm}^3} = \frac{3}{4\pi} \biggl( \frac{K}{G} \biggr)^{15/2} M_\mathrm{tot}^{-5} </math>

<math>~c^2_\mathrm{norm}</math>

<math>~\equiv</math>

<math>~\frac{P_\mathrm{norm}}{\rho_\mathrm{norm}} = \frac{4\pi}{3} \biggl( \frac{K^5}{G^3} \biggr)^{1/2} M_\mathrm{tot}^{-1} </math>

Note that the following relations also hold:

<math>~E_\mathrm{norm} = P_\mathrm{norm} R_\mathrm{norm}^3 = \frac{G M_\mathrm{tot}^2}{ R_\mathrm{norm}} = \biggl( \frac{3}{4\pi} \biggr) M_\mathrm{tot} c_\mathrm{norm}^2</math>

As is detailed in our accompanying discussion of bipolytropes — see also our discussion of the properties of isolated polytropes — in terms of the dimensionless Lane-Emden coordinate, <math>~\xi \equiv r/a_{5}</math>, where,

<math> a_{5} =\biggr[ \frac{3K}{2\pi G} \biggr]^{1/2} \rho_0^{-2/5} \, , </math>

the radial profile of various physical variables is as follows:

<math>~\frac{r}{[K^{1/2}/(G^{1/2}\rho_0^{2/5})]}</math>

<math>~=</math>

<math>~\biggl( \frac{3}{2\pi} \biggr)^{1/2} \xi \, ,</math>

<math>~\frac{\rho}{\rho_0}</math>

<math>~=</math>

<math>~\biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{-5/2} \, ,</math>

<math>~\frac{P}{K\rho_0^{6/5}}</math>

<math>~=</math>

<math>~\biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{-3} \, ,</math>

<math>~\frac{M_r}{[K^{3/2}/(G^{3/2}\rho_0^{1/5})]}</math>

<math>~=</math>

<math>~\biggl( \frac{2\cdot 3}{\pi } \biggr)^{1/2} \biggl[ \xi^3 \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{-3/2} \biggr] \, .</math>

Notice that, in these expressions, the central density, <math>~\rho_0</math>, has been used instead of <math>~M_\mathrm{tot}</math> to normalize the relevant physical variables. We can switch from one normalization to the other by realizing that — see, again, our accompanying discussion — in isolated <math>~n=5</math> polytropes, the total mass is given by the expression,

<math>M_\mathrm{tot} = \biggr[ \frac{2\cdot 3^4 K^3}{\pi G^3} \biggr]^{1/2} \rho_0^{-1/5} ~~~~\Rightarrow ~~~~ \rho_0^{1/5} = \biggr[ \frac{2\cdot 3^4 K^3}{\pi G^3} \biggr]^{1/2} M_\mathrm{tot}^{-1} \, .</math>

Employing this mapping to switch to our "preferred" adopted normalizations, as defined in the above boxed-in table, the four radial profiles become,

<math>~r^\dagger \equiv \frac{r}{R_\mathrm{norm}}</math>

<math>~=</math>

<math>~ \biggl( \frac{\pi}{2\cdot 3^4} \biggr) \biggl( \frac{3}{2\pi} \biggr)^{1/2} \xi = \biggl( \frac{\pi}{2^3\cdot 3^7} \biggr)^{1/2} \xi \, ,</math>

<math>~\rho^\dagger \equiv \frac{\rho}{\rho_\mathrm{norm}}</math>

<math>~=</math>

<math>~\biggl( \frac{2^3\cdot 3^6}{\pi} \biggr)^{3/2} \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{-5/2} \, ,</math>

<math>~P^\dagger \equiv \frac{P}{P_\mathrm{norm}}</math>

<math>~=</math>

<math>~\biggl( \frac{2\cdot 3^4}{\pi} \biggr)^3 \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{-3} \, ,</math>

<math>~\frac{M_r}{M_\mathrm{tot}}</math>

<math>~=</math>

<math>~ \biggl( \frac{\pi}{2\cdot 3^4} \biggr)^{1/2} \biggl( \frac{2\cdot 3}{\pi } \biggr)^{1/2} \biggl[ \xi^3 \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{-3/2} \biggr] = \biggl[\frac{\xi^2}{3}\biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{-1}\biggr]^{3/2} \, .</math>

Mass

While we already know the expression for the <math>~M_r</math> profile, having copied it from our discussion of detailed force-balanced models of isolated polytropes, let's show how that profile can be derived by integrating over the density profile. After employing the norm-subscripted quantities, as defined above, to normalize the radial coordinate and the mass density in our introductory discussion of the virial theorem, we obtained the following integral defining the,

Normalized Mass:

<math>~M_r(r^\dagger) </math>

<math>~=</math>

<math> M_\mathrm{tot} \int_0^{r^\dagger} 3(r^\dagger)^2 \rho^\dagger dr^\dagger \, . </math>

Plugging in the profiles for <math>~r^\dagger</math> and <math>~\rho^\dagger</math>, and recognizing that,

<math>~dr^\dagger = \biggl( \frac{\pi}{2^3\cdot 3^7} \biggr)^{1/2} d\xi \, ,</math>

gives, with the help of Mathematica's Online Integrator,

Mathematica Integral

<math>~\frac{M_r(\xi)}{M_\mathrm{tot} } </math>

<math>~=</math>

<math> 3 \biggl( \frac{\pi}{2^3\cdot 3^7} \biggr)^{3/2} \biggl( \frac{2^3\cdot 3^6}{\pi} \biggr)^{3/2} \int_0^{\xi} \xi^2 \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{-5/2} d\xi </math>

 

<math>~=</math>

<math> 3 \biggl( \frac{1}{3} \biggr)^{3/2} \biggl[ \frac{\xi^3}{3}\biggl(1+\frac{\xi^2}{3}\biggr)^{-3/2} \biggr]_0^{\xi} </math>

 

<math>~=</math>

<math> \biggl[ \frac{\xi^2}{3}\biggl(1+\frac{\xi^2}{3}\biggr)^{-1}\biggr]^{3/2} \, . </math>

As it should, this expression exactly matches the normalized <math>~M_r</math> profile shown above.

Alternatively, as has been laid out in our summary of normalized free-energy-relevant expressions,

<math>~\frac{M_r(x)}{M_\mathrm{tot}} </math>

<math>~=</math>

<math>~ \biggl( \frac{\rho_c}{\bar\rho} \biggr)_\mathrm{eq} \biggl( \frac{M_\mathrm{limit}}{M_\mathrm{tot}} \biggr) \int_0^{x} 3x^2 \biggl[ \frac{\rho(x)}{\rho_c} \biggr] dx \, ,</math>



Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation