Difference between revisions of "User:Tohline/SSC/UniformDensity"

From VistrailsWiki
Jump to navigation Jump to search
m (Move title image)
(→‎n = 1 Polytrope: Extract discussion of n=1 polytrope and move to separate chapter)
Line 153: Line 153:




==n = 1 Polytrope==
==n=1 Polytrope==
===Setup===
This discussion has been moved to [[User:Tohline/SSC/Stability/Polytropes#n_.3D_1_Polytrope|another chapter]].
From our derived [[User:Tohline/SSC/Structure/Polytropes#n_.3D_1_Polytrope|structure of an n = 1 polytrope]], in terms of the configuration's radius <math>R</math> and mass <math>M</math>, the central pressure and density are, respectively,
<div align="center">
<math>P_c = \frac{\pi G}{8}\biggl( \frac{M^2}{R^4} \biggr) </math> ,
</div>
and
<div align="center">
<math>\rho_c = \frac{\pi M}{4 R^3} </math> .
</div>
Hence the characteristic time and acceleration are, respectively,
<div align="center">
<math>
\tau_\mathrm{SSC} = \biggl[ \frac{R^2 \rho_c}{P_c} \biggr]^{1/2} =
\biggl[ \frac{2R^3 }{GM} \biggr]^{1/2} =
\biggl[ \frac{\pi}{2 G\rho_c} \biggr]^{1/2},
</math><br />
</div>
and,
<div align="center">
<math>
g_\mathrm{SSC} = \frac{P_c}{R \rho_c} = \biggl( \frac{GM}{2R^2} \biggr) .
</math><br />
</div>
 
The required functions are,
* <font color="red">Density</font>:
<div align="center">
<math>\frac{\rho_0(\chi_0)}{\rho_c} = \frac{\sin(\pi\chi_0)}{\pi\chi_0} </math> ;
</div>
 
* <font color="red">Pressure</font>:
<div align="center">
<math>\frac{P_0(\chi_0)}{P_c} = \biggl[ \frac{\sin(\pi\chi_0)}{\pi\chi_0} \biggr]^2 </math> ;
</div>
 
* <font color="red">Gravitational acceleration</font>:
<div align="center">
<math>
\frac{g_0(r_0)}{g_\mathrm{SSC}} = \frac{2}{\chi_0^2} \biggl[ \frac{M_r(\chi_0)}{M}\biggr]  =
\frac{2}{\pi \chi_0^2} \biggl[ \sin (\pi\chi_0 ) - \pi\chi_0 \cos (\pi\chi_0 ) \biggr].
</math><br />
</div>
 
So our desired Eigenvalues and Eigenvectors will be solutions to the following ODE:
 
<div align="center">
<math>
\frac{d^2x}{d\chi_0^2} + \frac{2}{\chi_0} \biggl[ 1 +  \pi\chi_0 \cot (\pi\chi_0 ) \biggr]  \frac{dx}{d\chi_0} + \frac{1}{\gamma_\mathrm{g}} \biggl\{ \frac{\pi \chi_0}{\sin(\pi\chi_0)} \biggl[ \frac{\pi \omega^2}{2G\rho_c} \biggr] + \frac{2}{\chi_0^2 } (4 - 3\gamma_\mathrm{g}) \biggl[ 1 - \pi\chi_0 \cot (\pi\chi_0 ) \biggr] \biggr\}  x = 0 ,
</math><br />
</div>
<br />
or, replacing <math>\chi_0</math> with <math>\xi \equiv \pi\chi_0</math> and dividing the entire expression by <math>\pi^2</math>, we have,
 
<div align="center">
<math>
\frac{d^2x}{d\xi^2} + \frac{2}{\xi} \biggl[ 1 +  \xi \cot \xi \biggr] \frac{dx}{d\xi} + \frac{1}{\gamma_\mathrm{g}} \biggl\{ \frac{\xi}{\sin \xi} \biggl[ \frac{\omega^2}{2\pi G\rho_c} \biggr] + \frac{2}{\xi^2 } (4 - 3\gamma_\mathrm{g}) \biggl[ 1 - \xi \cot \xi \biggr] \biggr\}  x = 0 .
</math><br />
</div>
<br />
 




{{LSU_HBook_footer}}
{{LSU_HBook_footer}}

Revision as of 22:02, 3 April 2015

Spherically Symmetric Configurations (Stability — Part III)

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |
LSU Stable.animated.gif

Suppose we now want to study the stability of one of the spherically symmetric, equilibrium structures that have been derived elsewhere. The identified set of simplified, time-dependent governing equations will tell us how the configuration will respond to an applied radial (i.e., spherically symmetric) perturbation that pushes the configuration slightly away from its initial equilibrium state.


The Eigenvalue Problem

As has been derived in an accompanying discussion, the second-order ODE that defines the relevant Eigenvalue problem is,

<math> \frac{d^2x}{d\chi_0^2} + \biggl[\frac{4}{\chi_0} - \biggl(\frac{\rho_0}{\rho_c}\biggr) \biggl(\frac{P_0}{P_c}\biggr)^{-1} \biggl(\frac{g_0}{g_\mathrm{SSC}}\biggr) \biggr] \frac{dx}{d\chi_0} + \biggl(\frac{\rho_0}{\rho_c}\biggr) \biggl(\frac{P_0}{P_c}\biggr)^{-1} \biggl(\frac{1}{\gamma_\mathrm{g}} \biggr)\biggl[\tau_\mathrm{SSC}^2 \omega^2 + (4 - 3\gamma_\mathrm{g})\biggl(\frac{g_0}{g_\mathrm{SSC}}\biggr) \frac{1}{\chi_0} \biggr] x = 0 . </math>

where the dimensionless radius,

<math> \chi_0 \equiv \frac{r_0}{R} , </math>

the characteristic time for dynamical oscillations in spherically symmetric configurations (SSC) is,

<math> \tau_\mathrm{SSC} \equiv \biggl[ \frac{R^2 \rho_c}{P_c} \biggr]^{1/2} , </math>

and the characteristic gravitational acceleration is,

<math> g_\mathrm{SSC} \equiv \frac{P_c}{R \rho_c} . </math>

Uniform-Density Configuration

Setup

From our derived structure of a uniform-density sphere, in terms of the configuration's radius <math>R</math> and mass <math>M</math>, the central pressure and density are, respectively,

<math>P_c = \frac{3G}{8\pi}\biggl( \frac{M^2}{R^4} \biggr) </math> ,

and

<math>\rho_c = \frac{3M}{4\pi R^3} </math> .

Hence the characteristic time and acceleration are, respectively,

<math> \tau_\mathrm{SSC} = \biggl[ \frac{R^2 \rho_c}{P_c} \biggr]^{1/2} = \biggl[ \frac{2R^3 }{GM} \biggr]^{1/2} = \biggl[ \frac{3}{2\pi G\rho_c} \biggr]^{1/2}, </math>

and,

<math> g_\mathrm{SSC} = \frac{P_c}{R \rho_c} = \biggl( \frac{GM}{2R^2} \biggr) . </math>

The required functions are,

  • Density:

<math>\frac{\rho_0(r_0)}{\rho_c} = 1 </math> ;

  • Pressure:

<math>\frac{P_0(r_0)}{P_c} = 1 - \chi_0^2 </math> ;

  • Gravitational acceleration:

<math> \frac{g_0(r_0)}{g_\mathrm{SSC}} = 2\chi_0 . </math>

So our desired Eigenvalues and Eigenvectors will be solutions to the following ODE:

<math> \frac{1}{(1 - \chi_0^2)} \biggl\{ (1 - \chi_0^2) \frac{d^2x}{d\chi_0^2} + \frac{4}{\chi_0}\biggl[1 - \frac{3}{2}\chi_0^2 \biggr] \frac{dx}{d\chi_0} + \frac{1}{\gamma_\mathrm{g}} \biggl[\tau_\mathrm{SSC}^2 \omega^2 + 2 (4 - 3\gamma_\mathrm{g}) \biggr] x \biggr\} = 0 . </math>

First few lowest-order modes

  • Mode 0:
<math>x_0 = \mathrm{constant}</math>, in which case,

<math> \omega_0^2 = - 2(4 - 3\gamma_\mathrm{g})\biggl[ \frac{2\pi G\rho_c}{3} \biggr] = 4\pi G \rho_c \biggl[ \gamma_\mathrm{g}- \frac{4}{3} \biggr] </math>

  • Mode 1:
<math>x_1 = a + b\chi_0^2</math>, in which case,

<math> \frac{dx}{d\chi_0} = 2b\chi_0; ~~~~ \frac{d^2 x}{d\chi_0^2} = 2b; </math>

<math> \frac{1}{(1 - \chi_0^2)} \biggl\{ 2b (1 - \chi_0^2) + 8b \biggl[1 - \frac{3}{2}\chi_0^2 \biggr] + A_1 \biggl(1 + \frac{b}{a}\chi_0^2 \biggr) \biggr\} = 0 , </math>

where,

<math> A_1 \equiv \frac{a}{\gamma_\mathrm{g}}\biggl[ \biggl( \frac{3}{2\pi G\rho_c} \biggr) \omega_1^2+ 2(4 - 3\gamma_\mathrm{g}) \biggr] . </math>

Therefore,

<math> (A_1 + 10b) + \biggl[ \biggl(\frac{b}{a}\biggr) A_1 - 14b \biggr] \chi_0^2 = 0 , </math>

<math> \Rightarrow ~~~~~ A_1 = - 10b ~~~~~\mathrm{and} ~~~~~ A_1 = 14a </math>

<math> \Rightarrow ~~~~~ \frac{b}{a} = -\frac{7}{5} ~~~~~\mathrm{and} ~~~~~ \frac{A_1}{a} = 14 = \frac{1}{\gamma_\mathrm{g}}\biggl[ \biggl( \frac{3}{2\pi G\rho_c} \biggr) \omega_1^2+ 2(4 - 3\gamma_\mathrm{g}) \biggr] .

</math>

Hence,

<math> \biggl( \frac{3}{2\pi G\rho_c} \biggr) \omega_1^2 = 20\gamma_\mathrm{g} -8 </math>

<math> \Rightarrow ~~~~~ \omega_1^2 = \frac{2}{3}\biggl( 4\pi G\rho_c \biggr) (5\gamma_\mathrm{g} -2) </math>

and, to within an arbitrary normalization factor,

<math> x_1 = 1 - \frac{7}{5}\chi_0^2 . </math>



n=1 Polytrope

This discussion has been moved to another chapter.


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation