Difference between revisions of "User:Tohline/SSC/Stability/Isothermal"

From VistrailsWiki
Jump to navigation Jump to search
(→‎Equilibrium Model: Insert image of comparison equations from Yabushita (1968()
Line 7: Line 7:
* [http://adsabs.harvard.edu/abs/1968MNRAS.140..109Y S. Yabushita (1968, MNRAS, 140, 109)] — ''Jeans's Type Gravitational Instability of Finite Isothermal Gas Spheres''
* [http://adsabs.harvard.edu/abs/1968MNRAS.140..109Y S. Yabushita (1968, MNRAS, 140, 109)] — ''Jeans's Type Gravitational Instability of Finite Isothermal Gas Spheres''
* [http://adsabs.harvard.edu/abs/1974MNRAS.168..427T L. G. Taff & H. M. Horn (1974, MNRAS, 168, 427-432)] — ''Radial Pulsations of Finite Isothermal Gas Spheres''
* [http://adsabs.harvard.edu/abs/1974MNRAS.168..427T L. G. Taff & H. M. Horn (1974, MNRAS, 168, 427-432)] — ''Radial Pulsations of Finite Isothermal Gas Spheres''
See also:
* [http://adsabs.harvard.edu/abs/1975MNRAS.171…85Y S. Yabushita (1975, MNRAS, 171, 85)]  — ''Jeans's Type Gravitational Instability of Finite Isothermal Gas Spheres — II''
* [http://adsabs.harvard.edu/abs/1992Ap%26SS.193..173Y S. Yabushita (1992, Astrophys. & Space Sciences, 193, 173 - 183)] — ''Similarity between the structure and stability of isothermal and polytropic gas spheres''
* [http://adsabs.harvard.edu/abs/1987A%26A...171..225C J. P. Chieze (1987, A&A, 171, 225 - 232)] — ''The fragmentation of molecular clouds. I - The mass-radius-velocity dispersion relations''





Revision as of 02:27, 8 November 2016

Radial Oscillations of Pressure-Truncated Isothermal Spheres

Here we draw primarily from the following three sources:

See also:


Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Groundwork

Equilibrium Model

In an accompanying discussion, while reviewing the original derivations of Ebert (1955) and Bonnor (1956), we have detailed the equilibrium properties of pressure-truncated isothermal spheres. A parallel presentation of these details can be found in §2 — specifically, equations (2.4) through (2.10) — of Yabushita (1968). Each of Yabushita's key mathematical expressions can be mapped to ours via the variable substitutions presented here in Table 1.

Table 1:  Mapping from Yabushita's (1968) Notation to Ours

Yabushita's (1968) Notation: <math>~x</math> <math>~\psi</math> <math>~\mu</math> <math>~M</math> <math>~x_0</math> <math>~p_0</math>
Our Notation: <math>~\xi</math> <math>~-\psi</math> <math>~\bar\mu</math> <math>~M_{\xi_e}</math> <math>~\xi_e</math> <math>~P_e</math>

For example, given the system's sound speed, <math>~c_s</math>, and total mass, <math>~M_{\xi_e}</math>, the expression from our presentation that shows how the bounding external pressure, <math>~P_e</math>, depends on the dimensionless Lane-Emden function, <math>~\psi</math>, is,

<math>~P_e</math>

<math>~=</math>

<math>~\biggl( \frac{c_s^8}{4\pi G^3 M_{\xi_e}^2} \biggr) ~\xi_e^4 \biggl(\frac{d\psi}{d\xi}\biggr)^2_e e^{-\psi_e}</math>

<math>~\Rightarrow ~~~ \xi_e^2 \biggl(\frac{d\psi}{d\xi}\biggr)_e e^{-(1/2)\psi_e}</math>

<math>~=</math>

<math>~\frac{1}{c_s^4}\biggl[ G^3 M_{\xi_e}^2 ~(4\pi P_e)\biggr]^{1 / 2} \, ,</math>

which exactly matches Yabushita's (1968) equation (2.9), after recalling that the system's sound speed is related to its temperature via the relation,

<math>c_s^2 = \frac{\Re T}{\bar{\mu}} \, .</math>

And, our expression for the truncated configuration's equilibrium radius is,

<math>~R</math>

<math>~=</math>

<math>~\frac{GM_{\xi_e}}{c_s^2} \biggl[ - \xi \biggl(\frac{d\psi}{d\xi}\biggr) \biggr]_e^{-1}</math>

which exactly matches Yabushita's (1968) equation (2.10).


Equations extracted from S. Yabushita (1968, MNRAS, 140, 109)

"Jeans's Type Gravitational Instability of Finite Isothermal Gas Spheres"

MNRAS, vol. 140, pp. 109-120 © Royal Astronomical Society

Yabushita (1968)

Mathematical expressions displayed here with layout modified from the original publication.

Linearized Wave Equation

In an accompanying discussion, we derived the so-called,

Adiabatic Wave (or Radial Pulsation) Equation

LSU Key.png

<math>~ \frac{d^2x}{dr_0^2} + \biggl[\frac{4}{r_0} - \biggl(\frac{g_0 \rho_0}{P_0}\biggr) \biggr] \frac{dx}{dr_0} + \biggl(\frac{\rho_0}{\gamma_\mathrm{g} P_0} \biggr)\biggl[\omega^2 + (4 - 3\gamma_\mathrm{g})\frac{g_0}{r_0} \biggr] x = 0 </math>


whose solution gives eigenfunctions that describe various radial modes of oscillation in spherically symmetric, self-gravitating fluid configurations.

See Also


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation