Difference between revisions of "User:Tohline/SSC/Stability/Isothermal"

From VistrailsWiki
Jump to navigation Jump to search
Line 12: Line 12:


==Groundwork==
==Groundwork==
===Equilibrium Model===
In an [[User:Tohline/SSC/Structure/BonnorEbert#Pressure-Bounded_Isothermal_Sphere|accompanying discussion]], while reviewing the original derivations of [http://adsabs.harvard.edu/abs/1955ZA.....37..217E Ebert] (1955) and [http://adsabs.harvard.edu/abs/1956MNRAS.116..351B Bonnor] (1956), we have detailed the equilibrium properties of pressure-truncated isothermal spheres.  A parallel presentation of these details can be found in §2 — specifically, equations (2.4) through (2.10) — of [http://adsabs.harvard.edu/abs/1968MNRAS.140..109Y Yabushita (1968)].  Each of Yabushita's key mathematical expressions can be mapped to ours via the variable substitutions presented here in Table 1.
<div align="center">
<table border="1" align="center" cellpadding="5">
<tr>
  <td align="right">[http://adsabs.harvard.edu/abs/1968MNRAS.140..109Y Yabushita's (1968)] Notation:</td>
  <td align="center"><math>~x</math></td>
  <td align="center"><math>~\psi</math></td>
  <td align="center"><math>~\mu</math></td>
  <td align="center"><math>~M</math></td>
  <td align="center"><math>~x_0</math></td>
  <td align="center"><math>~p_0</math></td>
</tr>
<tr>
  <td align="right">[[User:Tohline/SSC/Structure/BonnorEbert#Pressure-Bounded_Isothermal_Sphere|Our Notation]]:</td>
  <td align="center"><math>~\xi</math></td>
  <td align="center"><math>~-\psi</math></td>
  <td align="center"><math>~\bar\mu</math></td>
  <td align="center"><math>~M_{\xi_e}</math></td>
  <td align="center"><math>~\xi_e</math></td>
  <td align="center"><math>~P_e</math></td>
</tr>
</table>
</div>
For example, given the system's sound speed, <math>~c_s</math>, and total mass, <math>~M_{\xi_e}</math>, the expression from [[User:Tohline/SSC/Structure/BonnorEbert#Pressure|our presentation]] that shows how the bounding external pressure, <math>~P_e</math>, depends on the dimensionless Lane-Emden function, <math>~\psi</math>, is,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~P_e</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\biggl( \frac{c_s^8}{4\pi G^3 M_{\xi_e}^2} \biggr) ~\xi_e^4 \biggl(\frac{d\psi}{d\xi}\biggr)^2_e e^{-\psi_e}</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\Rightarrow ~~~ \xi_e^2 \biggl(\frac{d\psi}{d\xi}\biggr)_e e^{-(1/2)\psi_e}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{1}{c_s^4}\biggl[ G^3 M_{\xi_e}^2 ~(4\pi P_e)\biggr]^{1 / 2} \, ,</math>
  </td>
</tr>
</table>
</div>
which exactly matches [http://adsabs.harvard.edu/abs/1968MNRAS.140..109Y Yabushita's (1968)] equation (2.9), after recalling that the system's sound speed is related to its temperature via the relation,
<div align="center">
<math>c_s^2 = \frac{\Re T}{\bar{\mu}} \, .</math>
</div>
And, [[User:Tohline/SSC/Structure/BonnorEbert#Radius|our expression]] for the truncated configuration's equilibrium radius is,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\frac{R}{R_0}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\biggl[ - \xi \biggl(\frac{d\psi}{d\xi}\biggr) \biggr]_e^{-1}</math>
  </td>
</tr>
</table>
</div>
which exactly matches [http://adsabs.harvard.edu/abs/1968MNRAS.140..109Y Yabushita's (1968)] equation (2.10).


===Linearized Wave Equation===
===Linearized Wave Equation===

Revision as of 23:49, 7 November 2016

Radial Oscillations of Pressure-Truncated Isothermal Spheres

Here we draw primarily from the following three sources:


Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Groundwork

Equilibrium Model

In an accompanying discussion, while reviewing the original derivations of Ebert (1955) and Bonnor (1956), we have detailed the equilibrium properties of pressure-truncated isothermal spheres. A parallel presentation of these details can be found in §2 — specifically, equations (2.4) through (2.10) — of Yabushita (1968). Each of Yabushita's key mathematical expressions can be mapped to ours via the variable substitutions presented here in Table 1.

Yabushita's (1968) Notation: <math>~x</math> <math>~\psi</math> <math>~\mu</math> <math>~M</math> <math>~x_0</math> <math>~p_0</math>
Our Notation: <math>~\xi</math> <math>~-\psi</math> <math>~\bar\mu</math> <math>~M_{\xi_e}</math> <math>~\xi_e</math> <math>~P_e</math>

For example, given the system's sound speed, <math>~c_s</math>, and total mass, <math>~M_{\xi_e}</math>, the expression from our presentation that shows how the bounding external pressure, <math>~P_e</math>, depends on the dimensionless Lane-Emden function, <math>~\psi</math>, is,

<math>~P_e</math>

<math>~=</math>

<math>~\biggl( \frac{c_s^8}{4\pi G^3 M_{\xi_e}^2} \biggr) ~\xi_e^4 \biggl(\frac{d\psi}{d\xi}\biggr)^2_e e^{-\psi_e}</math>

<math>~\Rightarrow ~~~ \xi_e^2 \biggl(\frac{d\psi}{d\xi}\biggr)_e e^{-(1/2)\psi_e}</math>

<math>~=</math>

<math>~\frac{1}{c_s^4}\biggl[ G^3 M_{\xi_e}^2 ~(4\pi P_e)\biggr]^{1 / 2} \, ,</math>

which exactly matches Yabushita's (1968) equation (2.9), after recalling that the system's sound speed is related to its temperature via the relation,

<math>c_s^2 = \frac{\Re T}{\bar{\mu}} \, .</math>

And, our expression for the truncated configuration's equilibrium radius is,

<math>~\frac{R}{R_0}</math>

<math>~=</math>

<math>~\biggl[ - \xi \biggl(\frac{d\psi}{d\xi}\biggr) \biggr]_e^{-1}</math>

which exactly matches Yabushita's (1968) equation (2.10).


Linearized Wave Equation

In an accompanying discussion, we derived the so-called,

Adiabatic Wave (or Radial Pulsation) Equation

LSU Key.png

<math>~ \frac{d^2x}{dr_0^2} + \biggl[\frac{4}{r_0} - \biggl(\frac{g_0 \rho_0}{P_0}\biggr) \biggr] \frac{dx}{dr_0} + \biggl(\frac{\rho_0}{\gamma_\mathrm{g} P_0} \biggr)\biggl[\omega^2 + (4 - 3\gamma_\mathrm{g})\frac{g_0}{r_0} \biggr] x = 0 </math>


whose solution gives eigenfunctions that describe various radial modes of oscillation in spherically symmetric, self-gravitating fluid configurations.

See Also


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation