Difference between revisions of "User:Tohline/SSC/Stability/BiPolytrope0 0"

From VistrailsWiki
Jump to navigation Jump to search
(Begin new chapter examining radial oscillations in a zero-zero bipolytrope)
 
(→‎Groundwork: Working through wave equation expression for core of zero-zero bipolytrope)
Line 14: Line 14:
</div>
</div>


<!--
<div align="center" id="2ndOrderODE">
<font color="#770000">'''Adiabatic Wave Equation'''</font><br />


whose solution gives eigenfunctions that describe various radial modes of oscillation in spherically symmetric, self-gravitating fluid configurations.  According to our [[User:Tohline/SSC/Structure/BiPolytropes/Analytic0_0#BiPolytrope_with_nc_.3D_0_and_ne_.3D_0|accompanying derivation]], if the initial, unperturbed equilibrium configuration is an <math>~(n_c, n_e) = (0,0)</math> bipolytrope, then we know that the relevant functional profiles are as follows for the core and envelope, separately.
<math>
\frac{d^2x}{dr_0^2} + \biggl[\frac{4}{r_0} - \biggl(\frac{g_0 \rho_0}{P_0}\biggr) \biggr] \frac{dx}{dr_0} + \biggl(\frac{\rho_0}{\gamma_\mathrm{g} P_0} \biggr)\biggl[\omega^2 + (4 - 3\gamma_\mathrm{g})\frac{g_0}{r_0} \biggr]  x = 0 \, ,
</math>
</div>
-->
whose solution gives eigenfunctions that describe various radial modes of oscillation in spherically symmetric, self-gravitating fluid configurations.  According to our [[User:Tohline/SSC/Structure/BiPolytropes/Analytic0_0#BiPolytrope_with_nc_.3D_0_and_ne_.3D_0|accompanying derivation]], if the initial, unperturbed equilibrium configuration is an <math>~(n_c, n_e) = (0,0)</math> bipolytrope, then we know that the relevant functional profiles are as follows for the core and envelope, separately. Note that, throughout, we will preferentially adopt as the dimensionless radial coordinate, the parameter,
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\xi</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~\frac{r}{r_i} \, ,</math>
  </td>
</tr>
</table>
</div>
in which case,
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\chi</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~ \chi_i \xi = q \biggl( \frac{G\rho_c^2 R^2}{P_c} \biggr)^{1 /2 }\xi  \, .</math>
  </td>
</tr>
</table>
</div>
The corresponding radial coordinate range is,
<div align="center">
<math>~0 \le \xi \le 1 </math>&nbsp; &nbsp; &nbsp; for the core, and<br /><br />
<math>~1 \le \xi \le \frac{1}{q} </math>&nbsp; &nbsp; &nbsp; for the envelope.
</div>


===Core===
===Core===
Line 29: Line 75:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\biggl( \frac{P_c}{G\rho_c^2}\biggr)^{1 / 2} \chi \, ,</math>
<math>~\biggl( \frac{P_c}{G\rho_c^2}\biggr)^{1 / 2} \chi  
=
(qR) \xi
\, ,</math>
   </td>
   </td>
</tr>
</tr>
Line 53: Line 102:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~1 - \frac{2\pi}{3} \chi^2 \, ,</math>
<math>~1 - \frac{2\pi}{3} \chi^2  
=
1 - \frac{2\pi}{3} \biggl[ \frac{G\rho_c^2 R^2}{P_c} \biggr] q^2 \xi^2
=
1 - \frac{\xi^2}{g^2}
\, ,</math>
   </td>
   </td>
</tr>
</tr>
Line 65: Line 119:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\frac{4\pi}{3} \biggl( \frac{P_c^3}{G^3 \rho_c^4} \biggr)^{1 / 2}\chi^3 \, .</math>
<math>~\frac{4\pi}{3} \biggl( \frac{P_c^3}{G^3 \rho_c^4} \biggr)^{1 / 2}\chi^3  
=
\frac{4\pi}{3} \biggl( \frac{P_c^3}{G^3 \rho_c^4} \biggr)^{1 / 2} \biggl( \frac{G\rho_c^2 R^2}{P_c} \biggr)^{3 /2 } (q\xi)^3
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{4\pi}{3} ( \rho_c R^3 ) (q\xi)^3
=
\frac{4\pi}{3}  (q\xi)^3 \rho_c \biggl[ \biggl( \frac{P_c}{G\rho_c^2} \biggr)^{1 / 2} \biggl( \frac{3}{2\pi} \biggr)^{1 / 2} \frac{1}{qg}\biggr]^3
 
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{4\pi}{3}  (q\xi)^3  \biggl[ \biggl( \frac{P_c^3}{G^3\rho_c^4} \biggr)^{1 / 2} \biggl( \frac{3}{2\pi} \biggr)^{3 / 2} \frac{1}{q^3g^3}\biggr]
=
\frac{4\pi}{3}  \biggl[ \biggl(\frac{\pi}{6}\biggr)^{1 / 2} \nu g^3 M_\mathrm{tot}  \biggl( \frac{3}{2\pi} \biggr)^{3 / 2} \frac{1}{g^3}\biggr]\xi^3
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
M_\mathrm{tot}  \nu \xi^3 \, ,
</math>
  </td>
</tr>
</table>
</div>
where,
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~g^2(\nu,q)</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>
\biggl\{ 1  + \biggl(\frac{\rho_e}{\rho_0}\biggr)  \biggl[ 2 \biggl(1 - \frac{\rho_e}{\rho_0} \biggr) \biggl( 1-q \biggr) +
\frac{\rho_e}{\rho_0} \biggl(\frac{1}{q^2} - 1\biggr) \biggr] \biggr\} \, ,
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\frac{\rho_e}{\rho_c}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>
\frac{q^3}{\nu} \biggl( \frac{1-\nu}{1-q^3}\biggr) \, .
</math>
  </td>
</tr>
</table>
</div>
Hence,
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~g_0</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{G(M_\mathrm{tot} \nu \xi^3)}{(qR\xi)^2} =
\biggl( \frac{GM_\mathrm{tot} }{R^2 } \biggr) \frac{\nu \xi}{q^2} </math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
G \biggl[\biggl( \frac{P_c^3}{G^3\rho_c^4} \biggr)^{1 / 2} \biggl(\frac{6}{\pi}\biggr)^{1 / 2} \frac{1}{\nu g^3} \biggr]
\biggl[\biggl(\frac{G\rho_c^2}{P_c} \biggr)^{ 1 / 2} \biggl(\frac{2\pi}{3} \biggr)^{1 / 2} qg \biggr]^2
\frac{\nu \xi}{q^2} </math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
(P_c G)^{1 / 2} \biggl(\frac{2^3\pi}{3} \biggr)^{1 / 2} \frac{\xi}{g}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\frac{\rho_0}{P_0}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{\rho_c}{P_c} \biggl[ 1 - \frac{\xi^2}{g^2} \biggr]^{-1}
=
\frac{\rho_c}{P_c} \biggl( \frac{g^2}{g^2 - \xi^2} \biggr)
\, ;</math>
  </td>
</tr>
</table>
</div>
and the wave equation for the core becomes,
 
<!--
<div align="center" id="2ndOrderODE">
<font color="#770000">'''Adiabatic Wave Equation'''</font><br />
 
<math>
\frac{d^2x}{dr_0^2} + \biggl[\frac{4}{r_0} -
\biggl(\frac{g_0 \rho_0}{P_0}\biggr) \biggr] \frac{dx}{dr_0}
+ \biggl(\frac{\rho_0}{\gamma_\mathrm{g} P_0} \biggr)\biggl[\omega^2
+ (4 - 3\gamma_\mathrm{g})\frac{g_0}{r_0} \biggr]  x = 0 \, ,
</math>
</div>
-->
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~0</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{1}{(qR)^2} \cdot \frac{d^2x}{d\xi^2} + \biggl[\frac{4qR}{r_0} -
\biggl(\frac{qR g_0 \rho_0}{P_0}\biggr) \biggr] \frac{1}{(qR)^2} \cdot \frac{dx}{d\xi}
+ \biggl(\frac{\rho_0}{P_0} \biggr)\biggl[ \frac{\omega^2}{\gamma_\mathrm{g} }
+ \biggl( \frac{4 - 3\gamma_\mathrm{g}}{\gamma_\mathrm{g} } \biggr)\frac{g_0}{r_0} \biggr]  x
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{1}{(qR)^2} \biggl\{ \frac{d^2x}{d\xi^2} + \biggl[\frac{4}{\xi} -
q\biggl(\frac{P_c}{G\rho_c^2} \biggr)^{1 / 2}\biggl(\frac{3}{2\pi}\biggr)^{1 / 2} \frac{1}{qg}
(P_c G)^{1 / 2} \biggl(\frac{2^3\pi}{3} \biggr)^{1 / 2} \frac{\xi}{g} \frac{\rho_c}{P_c} \biggl( \frac{g^2}{g^2 - \xi^2} \biggr) \biggr]  \frac{dx}{d\xi} \biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+ \frac{\rho_c}{P_c} \biggl( \frac{g^2}{g^2 - \xi^2} \biggr) \biggl[ \frac{\omega^2}{\gamma_\mathrm{g} }
+ \biggl( \frac{4 - 3\gamma_\mathrm{g}}{\gamma_\mathrm{g} } \biggr)(P_c G)^{1 / 2} \biggl(\frac{2^3\pi}{3} \biggr)^{1 / 2} \frac{\xi}{g} \cdot \frac{1}{qR\xi}\biggr]  x
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{1}{(qR)^2} \biggl\{ \frac{d^2x}{d\xi^2} + \biggl[\frac{4}{\xi} -
\biggl( \frac{2\xi}{g^2 - \xi^2} \biggr) \biggr]  \frac{dx}{d\xi} \biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+ \frac{\rho_c}{P_c} \biggl( \frac{g^2}{g^2 - \xi^2} \biggr) \biggl[ \frac{\omega^2}{\gamma_\mathrm{g} }
+ \biggl( \frac{4 - 3\gamma_\mathrm{g}}{\gamma_\mathrm{g} } \biggr)(P_c G)^{1 / 2} \biggl(\frac{2^3\pi}{3} \biggr)^{1 / 2} \frac{1}{qg}
\biggl(\frac{G\rho_c^2}{P_c}  \biggr)^{1 / 2} \biggl( \frac{2\pi}{3} \biggr)^{1 / 2} qg \biggr]  x
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{1}{(qR)^2} \biggl\{ \frac{d^2x}{d\xi^2} + \biggl[\frac{4}{\xi} -
\biggl( \frac{2\xi}{g^2 - \xi^2} \biggr) \biggr]  \frac{dx}{d\xi} \biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+ \frac{\rho_c}{P_c} \biggl( \frac{g^2}{g^2 - \xi^2} \biggr) \biggl[ \frac{\omega^2}{\gamma_\mathrm{g} }
+ \biggl( \frac{4 - 3\gamma_\mathrm{g}}{\gamma_\mathrm{g} } \biggr)(P_c G)^{1 / 2} \biggl(\frac{2^3\pi}{3} \biggr)^{1 / 2} \frac{1}{qg}
\biggl(\frac{G\rho_c^2}{P_c}  \biggr)^{1 / 2} \biggl( \frac{2\pi}{3} \biggr)^{1 / 2} qg \biggr]  x
</math>
   </td>
   </td>
</tr>
</tr>
Line 73: Line 402:


===Envelope===
===Envelope===


=Related Discussions=
=Related Discussions=

Revision as of 22:03, 23 November 2016

Radial Oscillations of a Zero-Zero Bipolytrope

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Groundwork

In an accompanying discussion, we derived the so-called,

Adiabatic Wave (or Radial Pulsation) Equation

LSU Key.png

<math>~ \frac{d^2x}{dr_0^2} + \biggl[\frac{4}{r_0} - \biggl(\frac{g_0 \rho_0}{P_0}\biggr) \biggr] \frac{dx}{dr_0} + \biggl(\frac{\rho_0}{\gamma_\mathrm{g} P_0} \biggr)\biggl[\omega^2 + (4 - 3\gamma_\mathrm{g})\frac{g_0}{r_0} \biggr] x = 0 </math>

whose solution gives eigenfunctions that describe various radial modes of oscillation in spherically symmetric, self-gravitating fluid configurations. According to our accompanying derivation, if the initial, unperturbed equilibrium configuration is an <math>~(n_c, n_e) = (0,0)</math> bipolytrope, then we know that the relevant functional profiles are as follows for the core and envelope, separately. Note that, throughout, we will preferentially adopt as the dimensionless radial coordinate, the parameter,

<math>~\xi</math>

<math>~\equiv</math>

<math>~\frac{r}{r_i} \, ,</math>

in which case,

<math>~\chi</math>

<math>~=</math>

<math>~ \chi_i \xi = q \biggl( \frac{G\rho_c^2 R^2}{P_c} \biggr)^{1 /2 }\xi \, .</math>

The corresponding radial coordinate range is,

<math>~0 \le \xi \le 1 </math>      for the core, and

<math>~1 \le \xi \le \frac{1}{q} </math>      for the envelope.

Core

<math>~r_0</math>

<math>~=</math>

<math>~\biggl( \frac{P_c}{G\rho_c^2}\biggr)^{1 / 2} \chi = (qR) \xi \, ,</math>

<math>~\rho_0</math>

<math>~=</math>

<math>~\rho_c \, ,</math>

<math>~\frac{P_0}{P_c}</math>

<math>~=</math>

<math>~1 - \frac{2\pi}{3} \chi^2 = 1 - \frac{2\pi}{3} \biggl[ \frac{G\rho_c^2 R^2}{P_c} \biggr] q^2 \xi^2 = 1 - \frac{\xi^2}{g^2} \, ,</math>

<math>~M_r</math>

<math>~=</math>

<math>~\frac{4\pi}{3} \biggl( \frac{P_c^3}{G^3 \rho_c^4} \biggr)^{1 / 2}\chi^3 = \frac{4\pi}{3} \biggl( \frac{P_c^3}{G^3 \rho_c^4} \biggr)^{1 / 2} \biggl( \frac{G\rho_c^2 R^2}{P_c} \biggr)^{3 /2 } (q\xi)^3 </math>

 

<math>~=</math>

<math>~ \frac{4\pi}{3} ( \rho_c R^3 ) (q\xi)^3 = \frac{4\pi}{3} (q\xi)^3 \rho_c \biggl[ \biggl( \frac{P_c}{G\rho_c^2} \biggr)^{1 / 2} \biggl( \frac{3}{2\pi} \biggr)^{1 / 2} \frac{1}{qg}\biggr]^3

</math>

 

<math>~=</math>

<math>~ \frac{4\pi}{3} (q\xi)^3 \biggl[ \biggl( \frac{P_c^3}{G^3\rho_c^4} \biggr)^{1 / 2} \biggl( \frac{3}{2\pi} \biggr)^{3 / 2} \frac{1}{q^3g^3}\biggr] = \frac{4\pi}{3} \biggl[ \biggl(\frac{\pi}{6}\biggr)^{1 / 2} \nu g^3 M_\mathrm{tot} \biggl( \frac{3}{2\pi} \biggr)^{3 / 2} \frac{1}{g^3}\biggr]\xi^3 </math>

 

<math>~=</math>

<math>~ M_\mathrm{tot} \nu \xi^3 \, , </math>

where,

<math>~g^2(\nu,q)</math>

<math>~\equiv</math>

<math> \biggl\{ 1 + \biggl(\frac{\rho_e}{\rho_0}\biggr) \biggl[ 2 \biggl(1 - \frac{\rho_e}{\rho_0} \biggr) \biggl( 1-q \biggr) + \frac{\rho_e}{\rho_0} \biggl(\frac{1}{q^2} - 1\biggr) \biggr] \biggr\} \, , </math>

<math>~\frac{\rho_e}{\rho_c}</math>

<math>~=</math>

<math> \frac{q^3}{\nu} \biggl( \frac{1-\nu}{1-q^3}\biggr) \, . </math>

Hence,

<math>~g_0</math>

<math>~=</math>

<math>~\frac{G(M_\mathrm{tot} \nu \xi^3)}{(qR\xi)^2} = \biggl( \frac{GM_\mathrm{tot} }{R^2 } \biggr) \frac{\nu \xi}{q^2} </math>

 

<math>~=</math>

<math>~ G \biggl[\biggl( \frac{P_c^3}{G^3\rho_c^4} \biggr)^{1 / 2} \biggl(\frac{6}{\pi}\biggr)^{1 / 2} \frac{1}{\nu g^3} \biggr] \biggl[\biggl(\frac{G\rho_c^2}{P_c} \biggr)^{ 1 / 2} \biggl(\frac{2\pi}{3} \biggr)^{1 / 2} qg \biggr]^2 \frac{\nu \xi}{q^2} </math>

 

<math>~=</math>

<math>~ (P_c G)^{1 / 2} \biggl(\frac{2^3\pi}{3} \biggr)^{1 / 2} \frac{\xi}{g} </math>

<math>~\frac{\rho_0}{P_0}</math>

<math>~=</math>

<math>~ \frac{\rho_c}{P_c} \biggl[ 1 - \frac{\xi^2}{g^2} \biggr]^{-1} = \frac{\rho_c}{P_c} \biggl( \frac{g^2}{g^2 - \xi^2} \biggr) \, ;</math>

and the wave equation for the core becomes,

<math>~0</math>

<math>~=</math>

<math>~ \frac{1}{(qR)^2} \cdot \frac{d^2x}{d\xi^2} + \biggl[\frac{4qR}{r_0} - \biggl(\frac{qR g_0 \rho_0}{P_0}\biggr) \biggr] \frac{1}{(qR)^2} \cdot \frac{dx}{d\xi} + \biggl(\frac{\rho_0}{P_0} \biggr)\biggl[ \frac{\omega^2}{\gamma_\mathrm{g} } + \biggl( \frac{4 - 3\gamma_\mathrm{g}}{\gamma_\mathrm{g} } \biggr)\frac{g_0}{r_0} \biggr] x </math>

 

<math>~=</math>

<math>~ \frac{1}{(qR)^2} \biggl\{ \frac{d^2x}{d\xi^2} + \biggl[\frac{4}{\xi} - q\biggl(\frac{P_c}{G\rho_c^2} \biggr)^{1 / 2}\biggl(\frac{3}{2\pi}\biggr)^{1 / 2} \frac{1}{qg} (P_c G)^{1 / 2} \biggl(\frac{2^3\pi}{3} \biggr)^{1 / 2} \frac{\xi}{g} \frac{\rho_c}{P_c} \biggl( \frac{g^2}{g^2 - \xi^2} \biggr) \biggr] \frac{dx}{d\xi} \biggr\} </math>

 

 

<math>~ + \frac{\rho_c}{P_c} \biggl( \frac{g^2}{g^2 - \xi^2} \biggr) \biggl[ \frac{\omega^2}{\gamma_\mathrm{g} } + \biggl( \frac{4 - 3\gamma_\mathrm{g}}{\gamma_\mathrm{g} } \biggr)(P_c G)^{1 / 2} \biggl(\frac{2^3\pi}{3} \biggr)^{1 / 2} \frac{\xi}{g} \cdot \frac{1}{qR\xi}\biggr] x </math>

 

<math>~=</math>

<math>~ \frac{1}{(qR)^2} \biggl\{ \frac{d^2x}{d\xi^2} + \biggl[\frac{4}{\xi} - \biggl( \frac{2\xi}{g^2 - \xi^2} \biggr) \biggr] \frac{dx}{d\xi} \biggr\} </math>

 

 

<math>~ + \frac{\rho_c}{P_c} \biggl( \frac{g^2}{g^2 - \xi^2} \biggr) \biggl[ \frac{\omega^2}{\gamma_\mathrm{g} } + \biggl( \frac{4 - 3\gamma_\mathrm{g}}{\gamma_\mathrm{g} } \biggr)(P_c G)^{1 / 2} \biggl(\frac{2^3\pi}{3} \biggr)^{1 / 2} \frac{1}{qg} \biggl(\frac{G\rho_c^2}{P_c} \biggr)^{1 / 2} \biggl( \frac{2\pi}{3} \biggr)^{1 / 2} qg \biggr] x </math>

 

<math>~=</math>

<math>~ \frac{1}{(qR)^2} \biggl\{ \frac{d^2x}{d\xi^2} + \biggl[\frac{4}{\xi} - \biggl( \frac{2\xi}{g^2 - \xi^2} \biggr) \biggr] \frac{dx}{d\xi} \biggr\} </math>

 

 

<math>~ + \frac{\rho_c}{P_c} \biggl( \frac{g^2}{g^2 - \xi^2} \biggr) \biggl[ \frac{\omega^2}{\gamma_\mathrm{g} } + \biggl( \frac{4 - 3\gamma_\mathrm{g}}{\gamma_\mathrm{g} } \biggr)(P_c G)^{1 / 2} \biggl(\frac{2^3\pi}{3} \biggr)^{1 / 2} \frac{1}{qg} \biggl(\frac{G\rho_c^2}{P_c} \biggr)^{1 / 2} \biggl( \frac{2\pi}{3} \biggr)^{1 / 2} qg \biggr] x </math>


Envelope

Related Discussions

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation