Difference between revisions of "User:Tohline/SSC/Perspective Reconciliation"

From VistrailsWiki
Jump to navigation Jump to search
Line 91: Line 91:
   <td align="left">
   <td align="left">
<math>~- \frac{\rho}{r^2} \frac{\partial}{\partial r} \biggl( r^2 v_r \biggr) - v_r \frac{\partial \rho}{\partial r}</math>
<math>~- \frac{\rho}{r^2} \frac{\partial}{\partial r} \biggl( r^2 v_r \biggr) - v_r \frac{\partial \rho}{\partial r}</math>
  </td>
</tr>
</table>
</div>
  </td>
</tr>
<!-- EXPLAIN PERTURBATION VARIABLE CHOICES -->
<tr>
  <td align="left" colspan="2">
In an interval of time, <math>~dt = \partial t</math>, a fluid element initially at position <math>~r_0</math> moves to position, <math>~r = r_0 + \xi</math>.  On the righthand side of the expression, the radial coordinate will be handled as follows:  From the Lagrangian perspective, <math>~r \rightarrow (r_0 + \xi)</math>, while from the Eulerian perspective, we want to stay at the original coordinate location, so <math>~r \rightarrow r_0</math>.  From both perspectives,
<div align="center"><math>~v_r = \frac{\partial\xi}{\partial t} \, .</math></div>
Riding with the fluid element (Lagrangian perspective), <math>~\rho \rightarrow (\rho_0 + \rho_L) = \rho_0(1+s_L)</math>, while at a fixed coordinate location (Eulerian perspective), <math>~\rho \rightarrow (\rho_0 + \rho_E) + \rho_0(1 + s_E)</math>.
  </td>
</tr>
<tr>
  <td align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\frac{d}{dt}\biggl[\rho_0(1+s_L)\biggr]</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~-  \frac{\rho_0(1+s_L)}{r^2} \frac{\partial}{\partial r} \biggl( r^2 v_r \biggr)</math>
  </td>
</tr>
</table>
</div>
  </td>
  <td align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\frac{\partial}{\partial t}\biggl[\rho_0(1+s_E)\biggr]</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~- \frac{\rho_0(1+s_E)}{r^2} \frac{\partial}{\partial r} \biggl( r^2 v_r \biggr) - v_r \frac{\partial \rho_0(1+s_E)}{\partial r}</math>
   </td>
   </td>
</tr>
</tr>

Revision as of 02:00, 12 December 2014

Reconciling Eulerian versus Lagrangian Perspectives

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Linearizing the Key Relations

Continuity Equation
Lagrangian Perspective Eulerian Perspective

<math>~\frac{d\rho}{dt}</math>

<math>~=</math>

<math>~- \rho \nabla\cdot\vec{v}</math>

<math>~\frac{\partial\rho}{\partial t}</math>

<math>~=</math>

<math>~- \rho \nabla\cdot\vec{v} - \vec{v}\cdot \nabla\rho</math>

Spherically Symmetric Initial Configurations & Purely Radial Perturbations

<math>~\frac{d\rho}{dt}</math>

<math>~=</math>

<math>~- \frac{\rho}{r^2} \frac{\partial}{\partial r} \biggl( r^2 v_r \biggr)</math>

<math>~\frac{\partial\rho}{\partial t}</math>

<math>~=</math>

<math>~- \frac{\rho}{r^2} \frac{\partial}{\partial r} \biggl( r^2 v_r \biggr) - v_r \frac{\partial \rho}{\partial r}</math>

In an interval of time, <math>~dt = \partial t</math>, a fluid element initially at position <math>~r_0</math> moves to position, <math>~r = r_0 + \xi</math>. On the righthand side of the expression, the radial coordinate will be handled as follows: From the Lagrangian perspective, <math>~r \rightarrow (r_0 + \xi)</math>, while from the Eulerian perspective, we want to stay at the original coordinate location, so <math>~r \rightarrow r_0</math>. From both perspectives,

<math>~v_r = \frac{\partial\xi}{\partial t} \, .</math>

Riding with the fluid element (Lagrangian perspective), <math>~\rho \rightarrow (\rho_0 + \rho_L) = \rho_0(1+s_L)</math>, while at a fixed coordinate location (Eulerian perspective), <math>~\rho \rightarrow (\rho_0 + \rho_E) + \rho_0(1 + s_E)</math>.

<math>~\frac{d}{dt}\biggl[\rho_0(1+s_L)\biggr]</math>

<math>~=</math>

<math>~- \frac{\rho_0(1+s_L)}{r^2} \frac{\partial}{\partial r} \biggl( r^2 v_r \biggr)</math>

<math>~\frac{\partial}{\partial t}\biggl[\rho_0(1+s_E)\biggr]</math>

<math>~=</math>

<math>~- \frac{\rho_0(1+s_E)}{r^2} \frac{\partial}{\partial r} \biggl( r^2 v_r \biggr) - v_r \frac{\partial \rho_0(1+s_E)}{\partial r}</math>

See Also