Difference between revisions of "User:Tohline/Apps/MaclaurinSpheroidSequence"

From VistrailsWiki
Jump to navigation Jump to search
Line 122: Line 122:


==Alternate Sequence Diagrams==
==Alternate Sequence Diagrams==
<!-- [[File:EFE_AngMomVsEcc.png|right|400px|Maclaurin Spheroid Sequence]] -->
<table border="0" align="right" cellpadding="3">
<tr>
  <td align="center">'''Figure 2'''</td>
</tr>
<tr><td align="center">
[[File:EFE_AngMomVsEcc.png|center|350px|Maclaurin Spheroid Sequence]]
</td></tr>
<tr>
  <td align="center">
Solid black curve also may be found as:
<div align="center">
Fig. 6 (p. 79) of [<b>[[User:Tohline/Appendix/References#EFE|<font color="red">EFE</font>]]</b>];<br />
Fig. 7.3 (p. 174) of [<b>[[User:Tohline/Appendix/References#ST83|<font color="red">ST83</font>]]</b>]
</div>
  </td>
</tr>
</table>
The total angular momentum of each uniformly rotating Maclaurin spheroid is given by the expression,
The total angular momentum of each uniformly rotating Maclaurin spheroid is given by the expression,
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
Line 234: Line 215:
</table>
</table>


<table border="0" align="right" cellpadding="3">
Figure 2 shows how the system's angular momentum varies with eccentricity along the Maclaurin spheroid sequence; given the chosen normalization unit,  <math>~(GM^3\bar{a})^{1 / 2}</math>, it is understood that the mass and the volume &#8212; hence, also the density &#8212; of the configuration are held fixed as the eccentricity is varied.  Strictly speaking, along this sequence the angular momentum asymptotically approaches infinity as <math>~e \rightarrow 1</math>; by limiting the ordinate to a maximum value of 1.2, the plot masks this asymptotic behavior.  The small solid-green square marker identifies the location along this sequence where the system with the maximum angular velocity resides (see Figure 1); this system is not associated with a turning point along this angular-momentum versus eccentricity sequence.
 
<table border="0" align="center"><tr><td align="center">
<table border="0" align="center" cellpadding="3">
<tr>
<tr>
  <td align="center">'''Figure 2'''</td>
<td align="center" rowspan="3">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td>
   <td align="center">'''Figure 3'''</td>
   <td align="center">'''Figure 3'''</td>
</tr>
</tr>
<tr><td align="center">
<tr>
<td align="center">
[[File:EFE_AngMomVsEcc.png|center|350px|Maclaurin Spheroid Sequence]]
</td>
<td align="center">
[[File:EH83Fig3.png|center|350px|Maclaurin Spheroid Sequence]]
[[File:EH83Fig3.png|center|350px|Maclaurin Spheroid Sequence]]
</td></tr>
</td>
</tr>
<tr>
<tr>
  <td align="center">
Solid black curve also may be found as:
<div align="center">
Fig. 6 (p. 79) of [<b>[[User:Tohline/Appendix/References#EFE|<font color="red">EFE</font>]]</b>];<br />
Fig. 7.3 (p. 174) of [<b>[[User:Tohline/Appendix/References#ST83|<font color="red">ST83</font>]]</b>]
</div>
  </td>
   <td align="center">
   <td align="center">
This solid black curve also appears in:
This solid black curve also appears in:
Line 252: Line 250:
</table>
</table>


Figure 2 shows how the system's angular momentum varies with eccentricity along the Maclaurin spheroid sequence; given the chosen normalization unit,  <math>~(GM^3\bar{a})^{1 / 2}</math>, it is understood that the mass and the volume &#8212; hence, also the density &#8212; of the configuration are held fixed as the eccentricity is varied.  Strictly speaking, along this sequence the angular momentum asymptotically approaches infinity as <math>~e \rightarrow 1</math>; by limiting the ordinate to a maximum value of 1.2, the plot masks this asymptotic behavior.  The small solid-green square marker identifies the location along this sequence where the system with the maximum angular velocity resides (see Figure 1); this system is not associated with a turning point along this angular-momentum versus eccentricity sequence.
</td></tr></table>


Figure 3 shows how the square of the angular velocity varies with the square of the angular momentum for models along the Maclaurin spheroid sequence.  In generating this plot, following the lead of  [https://ui.adsabs.harvard.edu/abs/1983PThPh..69.1131E/abstract Eriguchi &amp; Hachisu (1983)], we have divided the square of the angular velocity by an additional factor of four, and we have adopted a slightly different angular-momentum normalization, namely,
Figure 3 shows how the square of the angular velocity varies with the square of the angular momentum for models along the Maclaurin spheroid sequence.  In generating this plot, following the lead of  [https://ui.adsabs.harvard.edu/abs/1983PThPh..69.1131E/abstract Eriguchi &amp; Hachisu (1983)], we have divided the square of the angular velocity by an additional factor of four, and we have adopted a slightly different angular-momentum normalization, namely,

Revision as of 23:20, 26 July 2020


Maclaurin Spheroid Sequence

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Detailed Force Balance Conditions

Figure 1
Maclaurin Spheroid Sequence

Solid black curve also may be found as:

Fig. 5 (p. 79) of [EFE];
Fig. 7.2 (p. 173) of [ST83]

The essential structural elements of each Maclaurin spheroid model are uniquely determined once we specify the system's axis ratio, <math>~c/a</math>, or by the system's meridional-plane eccentricity, <math>~e</math>, where

<math>~e</math>

<math>~\equiv</math>

<math>~\biggl[1 - \biggl(\frac{c}{a}\biggr)^2\biggr]^{1 / 2} \, ,</math>

which varies from e = 0 (spherical structure) to e = 1 (infinitesimally thin disk). According to our accompanying derivation, for a given choice of <math>~e</math>, the square of the system's equilibrium angular velocity is,

<math> ~ \omega_0^2 </math>

<math> ~= </math>

<math> 2\pi G \rho \biggl[ A_1 - A_3 (1-e^2) \biggr] \, , </math>

where,

<math> ~A_1 </math>

<math> ~= </math>

<math> \frac{1}{e^2} \biggl[\frac{\sin^{-1}e}{e} - (1-e^2)^{1/2} \biggr](1-e^2)^{1/2} \, , </math>

<math> ~A_3 </math>

<math> ~= </math>

<math> \frac{2}{e^2} \biggl[(1-e^2)^{-1/2} -\frac{\sin^{-1}e}{e} \biggr](1-e^2)^{1/2} \, . </math>

Figure 1 shows how the square of the angular velocity varies with eccentricity along the Maclaurin spheroid sequence; given the chosen normalization unit, <math>~\pi G\rho</math>, it is understood that the density of the configuration is held fixed as the eccentricity is varied. The small solid-green square marker identifies the location along the sequence where the system with the maximum angular velocity resides:

<math>~\biggl[ e, \frac{\omega_0^2}{\pi G \rho} \biggr]</math>

<math>~\equiv</math>

<math>~\biggl[ 0.92995, 0.449331 \biggr] \, .</math>

[EFE], §32, p. 80, Eqs. (9) & (10)

Alternate Sequence Diagrams

The total angular momentum of each uniformly rotating Maclaurin spheroid is given by the expression,

<math>~L</math>

<math>~=</math>

<math>~I \omega_0 \, ,</math>

where, the moment of inertia <math>~(I)</math> and the total mass <math>~(M)</math> of a uniform-density spheroid are, respectively,

<math>~I</math>

<math>~=</math>

<math>~\biggl(\frac{2}{5}\biggr) M a^2 \, ,</math>

      and,      

<math>~M</math>

<math>~=</math>

<math>~\biggl( \frac{4\pi}{3} \biggr) \rho a^2c \, .</math>

Hence, we have,

<math>~L^2</math>

<math>~=</math>

<math>~ \frac{2^2 M^2 a^4}{5^2} \biggl[ A_1 - A_3 (1-e^2) \biggr] 2\pi G \biggl[ \frac{3}{2^2\pi} \cdot \frac{M}{a^2c} \biggr]</math>

 

<math>~=</math>

<math>~ \frac{6GM^3 {\bar{a}}}{5^2} \biggl[ A_1 - A_3 (1-e^2) \biggr]\biggl(\frac{a}{c}\biggr)^{4/3} </math>

<math>~\Rightarrow ~~~ \frac{L}{(GM^3\bar{a})^{1 / 2}}</math>

<math>~=</math>

<math>~ \frac{6^{1 / 2}}{5} \biggl[ A_1 - A_3 (1-e^2) \biggr]^{1 / 2}(1 - e^2)^{-1 / 3} \, ,</math>

[EFE], §32, p. 78, Eq. (7)
[T78], §4.5, p. 86, Eq. (54)

where,         <math>~\bar{a} \equiv (a^2 c)^{1 / 3} \, .</math>

Figure 2 shows how the system's angular momentum varies with eccentricity along the Maclaurin spheroid sequence; given the chosen normalization unit, <math>~(GM^3\bar{a})^{1 / 2}</math>, it is understood that the mass and the volume — hence, also the density — of the configuration are held fixed as the eccentricity is varied. Strictly speaking, along this sequence the angular momentum asymptotically approaches infinity as <math>~e \rightarrow 1</math>; by limiting the ordinate to a maximum value of 1.2, the plot masks this asymptotic behavior. The small solid-green square marker identifies the location along this sequence where the system with the maximum angular velocity resides (see Figure 1); this system is not associated with a turning point along this angular-momentum versus eccentricity sequence.

Figure 2            Figure 3
Maclaurin Spheroid Sequence
Maclaurin Spheroid Sequence

Solid black curve also may be found as:

Fig. 6 (p. 79) of [EFE];
Fig. 7.3 (p. 174) of [ST83]

This solid black curve also appears in:

Fig. 3 (p. 1134) of Eriguchi & Hachisu (1983)
Fig. 4 (p. 4507) of Basillais & Huré (2019)

Figure 3 shows how the square of the angular velocity varies with the square of the angular momentum for models along the Maclaurin spheroid sequence. In generating this plot, following the lead of Eriguchi & Hachisu (1983), we have divided the square of the angular velocity by an additional factor of four, and we have adopted a slightly different angular-momentum normalization, namely,

<math>~j</math>

<math>~\equiv</math>

<math>~

\biggl( \frac{3}{2^8 \pi^4}  \biggr)^{1/6}  \frac{L}{(GM^3\bar{a})^{1 / 2}} \, .

</math>

As above, the small solid-green square marker identifies the location along the sequence where the system with the maximum angular velocity resides:

<math>~\biggl[ j^2, \frac{\omega_0^2}{4\pi G \rho} \biggr]</math>

<math>~\equiv</math>

<math>~\biggl[ 0.010105, 0.112333 \biggr] \, .</math>

See Also


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation