Difference between revisions of "User:Tohline/Apps/DysonPotential"

From VistrailsWiki
Jump to navigation Jump to search
Line 242: Line 242:
===Evaluation===
===Evaluation===


====Dyson's Figures====
In his effort to illustrate the behavior of equipotential contours, Dyson evaluated his expression for the potential up through <math>~\mathcal{O}(\tfrac{a^2}{c^2})</math>; that is, he evaluated the function,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~V_2 \equiv V_\mathrm{Dyson}\biggr|_{\mathcal{O}(a^2/c^2)}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{4K(\mu)}{R+R_1}\biggl[1 - \frac{1}{8}\biggl(\frac{a^2}{c^2}\biggr) \cos^2\biggl( \frac{\psi}{2}\biggr)\biggr]
+
\frac{(R + R_1)E(\mu)}{RR_1}\biggl[\frac{1}{8}\biggl(\frac{a^2}{c^2}\biggr) \cos\psi \biggr] \, .
</math>
  </td>
</tr>
</table>
<table border="0" cellpadding="8" align="center"><tr><td align="center">
<table border="1" cellpadding="5" align="center">
<tr><td align="center" colspan="3">
'''Figures 1 - 6 extracted without modification from pp. 63-66 of [http://adsabs.harvard.edu/abs/1893RSPTA.184...43D F. W. Dyson (1893)]'''<p></p>
''The Potential of an Anchor Ring'', Phil. Trans. Royal Soc. London. A., Vol. 184
</td></tr>
<tr>
<td>
[[File:RoverDinfty.png|300px|center|The Potential Exterior to an Anchor Ring; R/d = infinity]]
</td>
<td>
[[File:RoverD5over1.png|300px|center|The Potential Exterior to an Anchor Ring; R/d = 5]]
</td>
<td>
[[File:RoverD5over2.png|300px|center|The Potential Exterior to an Anchor Ring; R/d = 2.5]]
</td>
</tr>
<tr>
<td>
[[File:RoverD5over3.png|300px|center|The Potential Exterior to an Anchor Ring; R/d = 1.667]]
</td>
<td>
[[File:RoverD5over4.png|300px|center|The Potential Exterior to an Anchor Ring; R/d = 1.25]]
</td>
<td>
[[File:RoverDunity.png|300px|center|The Potential Exterior to an Anchor Ring; R/d = 1]]
</td>
</tr>
</table>
</td></tr></table>
====Our Attempt to Replicate====
First, let's test the accuracy of [http://adsabs.harvard.edu/abs/1893RSPTA.184...43D Dyson's (1893a)] "series expansion" expression for the elliptic integrals, <math>~K(\mu)</math> and <math>~E(\mu)</math>; in the following table, the high-precision evaluations labeled "''Numerical Recipes''" have been drawn from the tabulated data that is provided in our [[User:Tohline/2DStructure/ToroidalCoordinateIntegrationLimits#Evaluation_of_Elliptic_Integrals|accompanying discussion]] of incomplete elliptic integrals.  According to, for example, [https://en.wikipedia.org/wiki/Elliptic_integral#Complete_elliptic_integral_of_the_first_kind Wikipedia], the relevant series-expansion expressions are:
First, let's test the accuracy of [http://adsabs.harvard.edu/abs/1893RSPTA.184...43D Dyson's (1893a)] "series expansion" expression for the elliptic integrals, <math>~K(\mu)</math> and <math>~E(\mu)</math>; in the following table, the high-precision evaluations labeled "''Numerical Recipes''" have been drawn from the tabulated data that is provided in our [[User:Tohline/2DStructure/ToroidalCoordinateIntegrationLimits#Evaluation_of_Elliptic_Integrals|accompanying discussion]] of incomplete elliptic integrals.  According to, for example, [https://en.wikipedia.org/wiki/Elliptic_integral#Complete_elliptic_integral_of_the_first_kind Wikipedia], the relevant series-expansion expressions are:
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
Line 337: Line 391:
</tr>
</tr>
</table>
</table>
In his effort to illustrate the behavior of equipotential contours, Dyson evaluated his expression for the potential up through <math>~\mathcal{O}(\tfrac{a^2}{c^2})</math>; that is, he evaluated the function,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~V_2 \equiv V_\mathrm{Dyson}\biggr|_{\mathcal{O}(a^2/c^2)}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{4K(\mu)}{R+R_1}\biggl[1 - \frac{1}{8}\biggl(\frac{a^2}{c^2}\biggr) \cos^2\biggl( \frac{\psi}{2}\biggr)\biggr]
+
\frac{(R + R_1)E(\mu)}{RR_1}\biggl[\frac{1}{8}\biggl(\frac{a^2}{c^2}\biggr) \cos\psi \biggr] \, .
</math>
  </td>
</tr>
</table>


For <math>~c=1</math> and a specification of the ratio, <math>~a/c</math>, take the following steps to map out an equipotential curve that has <math>~V_2 = V_0</math>:
For <math>~c=1</math> and a specification of the ratio, <math>~a/c</math>, take the following steps to map out an equipotential curve that has <math>~V_2 = V_0</math>:
Line 378: Line 411:
</tr>
</tr>
</table>
</table>
<table border="0" cellpadding="8" align="center"><tr><td align="center">
<table border="1" cellpadding="5" align="center">
<tr><td align="center" colspan="3">
'''Figures 1 - 6 extracted without modification from pp. 63-66 of [http://adsabs.harvard.edu/abs/1893RSPTA.184...43D F. W. Dyson (1893)]'''<p></p>
''The Potential of an Anchor Ring'', Phil. Trans. Royal Soc. London. A., Vol. 184
</td></tr>
<tr>
<td>
[[File:RoverDinfty.png|300px|center|The Potential Exterior to an Anchor Ring; R/d = infinity]]
</td>
<td>
[[File:RoverD5over1.png|300px|center|The Potential Exterior to an Anchor Ring; R/d = 5]]
</td>
<td>
[[File:RoverD5over2.png|300px|center|The Potential Exterior to an Anchor Ring; R/d = 2.5]]
</td>
</tr>
<tr>
<td>
[[File:RoverD5over3.png|300px|center|The Potential Exterior to an Anchor Ring; R/d = 1.667]]
</td>
<td>
[[File:RoverD5over4.png|300px|center|The Potential Exterior to an Anchor Ring; R/d = 1.25]]
</td>
<td>
[[File:RoverDunity.png|300px|center|The Potential Exterior to an Anchor Ring; R/d = 1]]
</td>
</tr>
</table>
</td></tr></table>


====Tabulated Data====
====Tabulated Data====
Line 422: Line 424:
<table cellspacing="1" cellpadding="5" class="t1">
<table cellspacing="1" cellpadding="5" class="t1">
     <tr>
     <tr>
<td align="center" colspan="4">V<sub>2</sub> = 0.7737</td>
<td align="center" colspan="4" bgcolor="yellow">V<sub>2</sub> = 0.7737</td>
     </tr>
     </tr>
     <tr>
     <tr>
Line 432: Line 434:
       </td>
       </td>
       <td valign="middle" align="center">
       <td valign="middle" align="center">
         <p class="p3">varpi</p>
         <p class="p3"><math>~\varpi</math></p>
       </td>
       </td>
       <td valign="middle" align="center">
       <td valign="middle" align="center">
Line 439: Line 441:
     </tr>
     </tr>
     <tr>
     <tr>
       <td valign="middle" >
       <td valign="middle"  bgcolor="pink">
         <p class="p4">0.5000</p>
         <p class="p4">0.5000</p>
       </td>
       </td>
       <td valign="middle" >
       <td valign="middle"  bgcolor="pink">
         <p class="p4">2.5000</p>
         <p class="p4">2.5000</p>
       </td>
       </td>
       <td valign="middle" >
       <td valign="middle"  bgcolor="pink">
         <p class="p4">1.500</p>
         <p class="p4">1.500</p>
       </td>
       </td>
       <td valign="middle" >
       <td valign="middle"  bgcolor="pink">
         <p class="p4">0.000</p>
         <p class="p4">0.000</p>
       </td>
       </td>
Line 686: Line 688:
<table cellspacing="1" cellpadding="5" class="t1">
<table cellspacing="1" cellpadding="5" class="t1">
     <tr>
     <tr>
<td align="center" colspan="4">V<sub>2</sub> = 0.8551</td>
<td align="center" colspan="4" bgcolor="yellow">V<sub>2</sub> = 0.8551</td>
     </tr>
     </tr>
     <tr>
     <tr>
Line 696: Line 698:
       </td>
       </td>
       <td valign="middle" align="center">
       <td valign="middle" align="center">
         <p class="p3">varpi</p>
         <p class="p3"><math>~\varpi</math></p>
       </td>
       </td>
       <td valign="middle" align="center">
       <td valign="middle" align="center">
Line 703: Line 705:
     </tr>
     </tr>
     <tr>
     <tr>
       <td valign="middle" >
       <td valign="middle" bgcolor="pink" >
         <p class="p4">0.400</p>
         <p class="p4">0.400</p>
       </td>
       </td>
       <td valign="middle" >
       <td valign="middle" bgcolor="pink" >
         <p class="p4">2.4000</p>
         <p class="p4">2.4000</p>
       </td>
       </td>
       <td valign="middle" >
       <td valign="middle" bgcolor="pink" >
         <p class="p4">1.400</p>
         <p class="p4">1.400</p>
       </td>
       </td>
       <td valign="middle" >
       <td valign="middle" bgcolor="pink" >
         <p class="p4">0.000</p>
         <p class="p4">0.000</p>
       </td>
       </td>
Line 921: Line 923:
<table cellspacing="1" cellpadding="5" class="t1">
<table cellspacing="1" cellpadding="5" class="t1">
     <tr>
     <tr>
<td align="center" colspan="4">V<sub>2</sub> = 0.9120</td>
<td align="center" colspan="4" bgcolor="pink">V<sub>2</sub> = 0.9120</td>
     </tr>
     </tr>
     <tr>
     <tr>
Line 931: Line 933:
       </td>
       </td>
       <td valign="middle" align="center">
       <td valign="middle" align="center">
         <p class="p3">varpi</p>
         <p class="p3"><math>~\varpi</math></p>
       </td>
       </td>
       <td valign="middle" align="center">
       <td valign="middle" align="center">
Line 944: Line 946:
         <p class="p4">1.0776</p>
         <p class="p4">1.0776</p>
       </td>
       </td>
       <td valign="middle" >
       <td valign="middle" bgcolor="pink" >
         <p class="p4">0</p>
         <p class="p4">0.000</p>
       </td>
       </td>
       <td valign="middle" >
       <td valign="middle" bgcolor="yellow" >
         <p class="p4">0.402</p>
         <p class="p4">0.402</p>
       </td>
       </td>
Line 1,115: Line 1,117:
<table cellspacing="1" cellpadding="5" class="t1">
<table cellspacing="1" cellpadding="5" class="t1">
     <tr>
     <tr>
<td align="center" colspan="4">V<sub>2</sub> = 0.9610</td>
<td align="center" colspan="4" bgcolor="pink">V<sub>2</sub> = 0.9610</td>
     </tr>
     </tr>
     <tr>
     <tr>
Line 1,125: Line 1,127:
       </td>
       </td>
       <td valign="middle" align="center">
       <td valign="middle" align="center">
         <p class="p3">varpi</p>
         <p class="p3"><math>~\varpi</math></p>
       </td>
       </td>
       <td valign="middle" align="center">
       <td valign="middle" align="center">
Line 1,138: Line 1,140:
         <p class="p4">1.0206</p>
         <p class="p4">1.0206</p>
       </td>
       </td>
       <td valign="middle" >
       <td valign="middle" bgcolor="pink" >
         <p class="p4">0.000</p>
         <p class="p4">0.000</p>
       </td>
       </td>
       <td valign="middle" >
       <td valign="middle" bgcolor="yellow" >
         <p class="p4">0.204</p>
         <p class="p4">0.204</p>
       </td>
       </td>
Line 1,282: Line 1,284:
<table cellspacing="1" cellpadding="5" class="t1">
<table cellspacing="1" cellpadding="5" class="t1">
     <tr>
     <tr>
<td align="center" colspan="4">V<sub>2</sub> = 0.9800</td>
<td align="center" colspan="4" bgcolor="yellow">V<sub>2</sub> = 0.9800</td>
     </tr>
     </tr>
     <tr>
     <tr>
Line 1,292: Line 1,294:
       </td>
       </td>
       <td valign="middle" align="center">
       <td valign="middle" align="center">
         <p class="p3">varpi</p>
         <p class="p3"><math>~\varpi</math></p>
       </td>
       </td>
       <td valign="middle" align="center">
       <td valign="middle" align="center">
Line 1,299: Line 1,301:
     </tr>
     </tr>
     <tr>
     <tr>
       <td valign="middle" >
       <td valign="middle" bgcolor="pink" >
         <p class="p4">1.0000</p>
         <p class="p4">1.0000</p>
       </td>
       </td>
       <td valign="middle" >
       <td valign="middle" bgcolor="pink" >
         <p class="p4">1.0000</p>
         <p class="p4">1.0000</p>
       </td>
       </td>
       <td valign="middle" >
       <td valign="middle" bgcolor="pink" >
         <p class="p4">0.000</p>
         <p class="p4">0.000</p>
       </td>
       </td>
       <td valign="middle" >
       <td valign="middle" bgcolor="pink" >
         <p class="p4">0.000</p>
         <p class="p4">0.000</p>
       </td>
       </td>
Line 1,434: Line 1,436:
<table cellspacing="1" cellpadding="5" class="t1">
<table cellspacing="1" cellpadding="5" class="t1">
     <tr>
     <tr>
<td align="center" colspan="4">V<sub>2</sub> = 0.9896</td>
<td align="center" colspan="4" bgcolor="yellow">V<sub>2</sub> = 0.9896</td>
     </tr>
     </tr>
     <tr>
     <tr>
Line 1,444: Line 1,446:
       </td>
       </td>
       <td valign="middle" align="center">
       <td valign="middle" align="center">
         <p class="p3">varpi</p>
         <p class="p3"><math>~\varpi</math></p>
       </td>
       </td>
       <td valign="middle" align="center">
       <td valign="middle" align="center">
Line 1,451: Line 1,453:
     </tr>
     </tr>
     <tr>
     <tr>
       <td valign="middle" >
       <td valign="middle" bgcolor="pink" >
         <p class="p4">0.8000</p>
         <p class="p4">0.8000</p>
       </td>
       </td>
       <td valign="middle" >
       <td valign="middle" bgcolor="pink" >
         <p class="p4">1.2000</p>
         <p class="p4">1.2000</p>
       </td>
       </td>
       <td valign="middle" >
       <td valign="middle" bgcolor="pink" >
         <p class="p4">0.200</p>
         <p class="p4">0.200</p>
       </td>
       </td>
       <td valign="middle" >
       <td valign="middle" bgcolor="pink" >
         <p class="p4">0.000</p>
         <p class="p4">0.000</p>
       </td>
       </td>
Line 1,629: Line 1,631:
<table cellspacing="1" cellpadding="5" class="t1">
<table cellspacing="1" cellpadding="5" class="t1">
     <tr>
     <tr>
<td align="center" colspan="4">V<sub>2</sub> = 1.0212</td>
<td align="center" colspan="4" bgcolor="yellow">V<sub>2</sub> = 1.0212</td>
     </tr>
     </tr>
     <tr>
     <tr>
Line 1,639: Line 1,641:
       </td>
       </td>
       <td valign="middle" align="center">
       <td valign="middle" align="center">
         <p class="p3">varpi</p>
         <p class="p3"><math>~\varpi</math></p>
       </td>
       </td>
       <td valign="middle" align="center">
       <td valign="middle" align="center">
Line 1,646: Line 1,648:
     </tr>
     </tr>
     <tr>
     <tr>
       <td valign="middle" >
       <td valign="middle" bgcolor="pink" >
         <p class="p4">0.6000</p>
         <p class="p4">0.6000</p>
       </td>
       </td>
       <td valign="middle" >
       <td valign="middle" bgcolor="pink" >
         <p class="p4">1.4000</p>
         <p class="p4">1.4000</p>
       </td>
       </td>
       <td valign="middle" >
       <td valign="middle" bgcolor="pink" >
         <p class="p4">0.400</p>
         <p class="p4">0.400</p>
       </td>
       </td>
       <td valign="middle" >
       <td valign="middle" bgcolor="pink" >
         <p class="p4">0.000</p>
         <p class="p4">0.000</p>
       </td>
       </td>

Revision as of 21:27, 30 August 2018

Dyson (1893)

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Overview

In his pioneering work, F. W. Dyson (1893a, Philosophical Transactions of the Royal Society of London. A., 184, 43 - 95) and (1893b, Philosophical Transactions of the Royal Society of London. A., 184, 1041 - 1106) used analytic techniques to determine the approximate equilibrium structure of axisymmetric, uniformly rotating, incompressible tori. C.-Y. Wong (1974, ApJ, 190, 675 - 694) extended Dyson's work, using numerical techniques to obtain more accurate — but still approximate — equilibrium structures for incompressible tori having solid body rotation. Since then, Y. Eriguchi & D. Sugimoto (1981, Progress of Theoretical Physics, 65, 1870 - 1875) and I. Hachisu, J. E. Tohline & Y. Eriguchi (1987, ApJ, 323, 592 - 613) have mapped out the full sequence of Dyson-Wong tori, beginning from a bifurcation point on the Maclaurin spheroid sequence.

External Potential

His Derived Expression

On p. 62 of Dyson (1893a), we find the following approximate expression for the potential at point "P", anywhere exterior to an anchor ring:

Anchor Ring Schematic

Caption: Anchor ring schematic, adapted from figure near the top of §2 (on p. 47) of Dyson (1893a)

Equation image extracted without modification from p. 62 of Dyson (1893a)

The Potential of an Anchor Ring, Phil. Trans. Royal Soc. London. A., Vol. 184

The Potential Exterior to an Anchor Ring

In Dyson's expression, the leading factor of <math>~F</math> is the complete elliptic integral of the first kind, namely,

<math>~F = F(\mu)</math>

<math>~\equiv</math>

<math>~\int_0^{\pi/2} \frac{d\phi}{\sqrt{1 - \mu^2 \sin^2\phi}} \, ,</math>

where, <math>~\mu \equiv (R_1 - R)/(R_1 + R)</math>. Similarly, <math>~E = E(\mu)</math> is the complete elliptic integral of the second kind.

Comparison With Thin Ring Approximation

In the limit of <math>~a/c \rightarrow 0</math>, Dyson's expression gives,

<math>~V_\mathrm{Dyson}</math>

<math>~=</math>

<math>~\frac{4K(\mu)}{R+R_1} \, ,</math>

where we have acknowledged that, in the twenty-first century, the complete elliptic integral of the first kind is more customarily represented by the letter, <math>~K</math>. In a separate discussion, we have shown that the gravitational potential of an infinitesimally thin ring is given precisely by the expression,

<math>~\biggl[ \frac{\pi}{GM}\biggr] \Phi_\mathrm{TR}</math>

<math>~=</math>

<math>~- \frac{2K(k)}{R_1} \, ,</math>

where, <math>~k \equiv [1-(R/R_1)^2]^{1 / 2}</math>. Is Dyson's expression identical to this one when <math>~a/c = 0</math> ?

Proof

Taking a queue from our accompanying discussion of toroidal coordinates, if we adopt the variable notation,

<math>~\eta \equiv \ln\biggl(\frac{R_1}{R}\biggr) \, ,</math>

then we can write,

<math>~\cosh\eta = \frac{1}{2}\biggl[e^\eta + e^{-\eta}\biggr]</math>

<math>~=</math>

<math>~\frac{R^2 + R_1^2}{2RR_1} \, ,</math>

which implies that,

<math>~\biggl[ \frac{2}{\coth\eta +1} \biggr]^{1 / 2} = [1 - e^{-2\eta}]^{1 / 2}</math>

<math>~=</math>

<math>~\biggl[ 1 - \biggl(\frac{R}{R_1}\biggr)^2 \biggr]^{1 / 2} \, .</math>

This is the definition of the parameter, <math>~k</math>, in the expression for <math>~\Phi_\mathrm{TR}</math>. Now, if we employ the Descending Landen Transformation for the complete elliptic integral of the first kind, we can make the substitution,

<math>~K(k)</math>

<math>~=</math>

<math>~ (1 + k_1)K(k_1) \, , </math>

      where,      

<math>~k_1</math>

<math>~\equiv</math>

<math>~ \frac{1-\sqrt{1-k^2}}{1+\sqrt{1-k^2}} \, . </math>

But notice that, <math>~\sqrt{1-k^2} = e^{-\eta}</math>, in which case,

<math>~k_1 </math>

<math>~=</math>

<math>~ \frac{1-e^{-\eta}}{1+e^{-\eta}} </math>

<math>~=</math>

<math>~ \frac{1-R/R_1}{1+R/R_1} </math>

<math>~=</math>

<math>~ \frac{R_1-R}{R_1+R} \, , </math>

which is the definition of the parameter, <math>~\mu</math>, in the expression for <math>~V_\mathrm{Dyson}</math>. Hence, we can write,

<math>~\biggl[ \frac{\pi}{GM}\biggr] \Phi_\mathrm{TR}</math>

<math>~=</math>

<math>~- \frac{2}{R_1} \biggl[(1+k_1)K(k_1) \biggr] </math>

 

<math>~=</math>

<math>~- \frac{2K(\mu)}{R_1} \biggl[1+\frac{R_1-R}{R_1+R} \biggr] </math>

 

<math>~=</math>

<math>~- \frac{4K(\mu)}{R_1+R} \, .</math>

Aside from the adopted sign convention, this is indeed precisely the expression given by <math>~V_\mathrm{Dyson}</math> when <math>~a/c = 0</math> .

Evaluation

Dyson's Figures

In his effort to illustrate the behavior of equipotential contours, Dyson evaluated his expression for the potential up through <math>~\mathcal{O}(\tfrac{a^2}{c^2})</math>; that is, he evaluated the function,

<math>~V_2 \equiv V_\mathrm{Dyson}\biggr|_{\mathcal{O}(a^2/c^2)}</math>

<math>~=</math>

<math>~ \frac{4K(\mu)}{R+R_1}\biggl[1 - \frac{1}{8}\biggl(\frac{a^2}{c^2}\biggr) \cos^2\biggl( \frac{\psi}{2}\biggr)\biggr] + \frac{(R + R_1)E(\mu)}{RR_1}\biggl[\frac{1}{8}\biggl(\frac{a^2}{c^2}\biggr) \cos\psi \biggr] \, . </math>

Figures 1 - 6 extracted without modification from pp. 63-66 of F. W. Dyson (1893)

The Potential of an Anchor Ring, Phil. Trans. Royal Soc. London. A., Vol. 184

The Potential Exterior to an Anchor Ring; R/d = infinity
The Potential Exterior to an Anchor Ring; R/d = 5
The Potential Exterior to an Anchor Ring; R/d = 2.5
The Potential Exterior to an Anchor Ring; R/d = 1.667
The Potential Exterior to an Anchor Ring; R/d = 1.25
The Potential Exterior to an Anchor Ring; R/d = 1

Our Attempt to Replicate

First, let's test the accuracy of Dyson's (1893a) "series expansion" expression for the elliptic integrals, <math>~K(\mu)</math> and <math>~E(\mu)</math>; in the following table, the high-precision evaluations labeled "Numerical Recipes" have been drawn from the tabulated data that is provided in our accompanying discussion of incomplete elliptic integrals. According to, for example, Wikipedia, the relevant series-expansion expressions are:

<math>~K(\mu)</math>

<math>~=</math>

<math>~ \frac{\pi}{2} \biggl\{ 1 + \biggl[\frac{1}{2}\biggr]^2\mu^2 + \biggl[ \frac{1\cdot 3}{2\cdot 4}\biggr]^2\mu^4 + \biggl[ \frac{5\cdot 3\cdot 1}{6\cdot 4\cdot 2} \biggr]^2 \mu^6 + \cdots + \biggl[ \frac{(2n-1)!!}{(2n)!!}\biggr]^2 \mu^{2n} +\cdots \biggr\} \, ; </math>

<math>~E(\mu)</math>

<math>~=</math>

<math>~ \frac{\pi}{2} \biggl\{ 1 ~-~ \biggl[\frac{1}{2}\biggr]^2\frac{\mu^2}{1} ~-~ \biggl[ \frac{1\cdot 3}{2\cdot 4}\biggr]^2 \frac{\mu^4}{3} ~- ~\biggl[ \frac{5\cdot 3\cdot 1}{6\cdot 4\cdot 2} \biggr]^2 \frac{\mu^6}{5} ~- ~\cdots ~- ~\biggl[ \frac{(2n-1)!!}{(2n)!!}\biggr]^2 \frac{\mu^{2n}}{2n-1} ~-~ \cdots \biggr\} \, . </math>

These expressions — up through <math>~\mathcal{O}(\mu^4)</math> — can be found in the middle of p. 58 of Dyson (1893a).

<math>~\mu</math> Numerical Recipes Series expansion up through <math>~\mathcal{O}(\mu^4)</math>
<math>~K(\mu)</math> <math>~E(\mu)</math> <math>~K(\mu)</math> <math>~E(\mu)</math>
0.34202014 1.62002589 1.52379921 1.6198 1.5239
0.57357644 1.73124518 1.43229097 1.7239 1.4336
0.76604444 1.93558110 1.30553909 1.8773 1.3150
0.90630779 2.30878680 1.16382796 2.042 1.199
0.98480775 3.15338525 1.04011440 2.16 1.12

For <math>~c=1</math> and a specification of the ratio, <math>~a/c</math>, take the following steps to map out an equipotential curve that has <math>~V_2 = V_0</math>:

  • Choose a value of <math>~R \ge a</math>
    • Guess a value of <math>~(c-R) \le R_1 \le (c+R) ~~~\Rightarrow ~~~ \varpi = (R_1^2 - R^2)/(4c)</math>     and,     <math>~z = \pm \sqrt{ R_1^2 - (c+\varpi)^2}</math>
    • Set <math>~ \cos\psi = (R_1^2 + R^2 - 4c^2)/(2RR_1)</math>
    • Evaluate the function, <math>~V_2</math>
    • If <math>~V_2 \ne V_0</math> to the desired accuracy, loop back up and guess another value of <math>~R_1</math>
  • If <math>~V_2 = V_0</math> to the desired accuracy, save the coordinate location, <math>~(\varpi,z)</math>, and loop back up to pick another value of <math>~R</math>
 

 

 
The Potential Exterior to an Anchor Ring; R/d = 2.5
Compare with Dyson

Tabulated Data

V2 = 0.7737

R

R1

<math>~\varpi</math>

z

0.5000

2.5000

1.500

0.000

0.5005

2.4990

1.499

0.043

0.504

2.4889

1.485

0.137

0.510

2.4720

1.463

0.215

0.520

2.4445

1.426

0.298

0.530

2.4177

1.391

0.358

0.550

2.3665

1.324

0.444

0.580

2.2940

1.232

0.532

0.610

2.2265

1.146

0.592

0.640

2.1632

1.067

0.636

0.700

2.0465

0.925

0.696

0.800

1.8745

0.718

0.749

0.9000

1.7240

0.541

0.774

1.000

1.5890

0.381

0.786

1.100

1.4670

0.236

0.791

1.2000

1.3558

0.100

0.793

1.277

1.2766

0.000

0.794



V2 = 0.8551

R

R1

<math>~\varpi</math>

z

0.400

2.4000

1.400

0.000

0.405

2.3830

1.379

0.144

0.410

2.3668

1.358

0.199

0.425

2.3190

1.299

0.302

0.450

2.2458

1.210

0.398

0.480

2.1655

1.115

0.466

0.520

2.0690

1.003

0.520

0.570

1.9610

0.880

0.557

0.620

1.8635

0.772

0.577

0.700

1.7240

0.621

0.588

0.800

1.5712

0.457

0.588

0.900

1.4360

0.313

0.581

1.000

1.3147

0.182

0.575

1.100

1.2050

0.061

0.572

1.1518

1.1518

0.000

0.572


V2 = 0.9120

R

R1

<math>~\varpi</math>

z

1.0776

1.0776

0.000

0.402

1.000

1.1582

0.085

0.404

0.950

1.2135

0.143

0.409

0.900

1.2715

0.202

0.416

0.800

1.3979

0.328

0.435

0.700

1.5401

0.470

0.458

0.600

1.7040

0.636

0.477

0.550

1.7970

0.732

0.480

0.500

1.8998

0.840

0.474

0.475

1.9560

0.900

0.464

0.440

2.0410

0.993

0.440

0.400

2.1510

1.117

0.383


V2 = 0.9610

R

R1

<math>~\varpi</math>

z

1.0206

1.0206

0.000

0.204

0.9500

1.0937

0.073

0.210

0.900

1.1488

0.127

0.221

0.800

1.2685

0.242

0.257

0.700

1.4030

0.370

0.304

0.600

1.5572

0.516

0.355

0.550

1.6440

0.600

0.378

0.500

1.7395

0.694

0.395

0.450

1.8462

0.801

0.404

0.410

1.9690

0.929

0.394



V2 = 0.9800

R

R1

<math>~\varpi</math>

z

1.0000

1.0000

0.000

0.000

0.900

1.1053

0.103

0.072

0.800

1.2225

0.214

0.147

0.700

1.3543

0.336

0.222

0.600

1.5050

0.476

0.293

0.550

1.5897

0.556

0.325

0.500

1.6827

0.645

0.352

0.450

1.7865

0.747

0.372

0.400

1.9050

0.867

0.377


V2 = 0.9896

R

R1

<math>~\varpi</math>

z

0.8000

1.2000

0.200

0.000

0.7950

1.2062

0.206

0.034

0.780

1.2248

0.223

0.068

0.760

1.2503

0.246

0.099

0.730

1.2895

0.282

0.134

0.700

1.3305

0.320

0.166

0.650

1.4022

0.386

0.213

0.600

1.4796

0.457

0.256

0.550

1.5633

0.535

0.294

0.500

1.6552

0.622

0.328

0.450

1.7573

0.721

0.353

0.400

1.8737

0.838

0.366



V2 = 1.0212

R

R1

<math>~\varpi</math>

z

0.6000

1.4000

0.400

0.000

0.5950

1.4078

0.407

0.048

0.580

1.4315

0.428

0.097

0.570

1.4477

0.443

0.120

0.540

1.4978

0.488

0.171

0.500

1.5688

0.553

0.224

0.450

1.6663

0.644

0.275

0.400

1.7767

0.749

0.312

See Also

The following quotes have been taken from Petroff & Horatschek (2008):

§1:   "The problem of the self-gravitating ring captured the interest of such renowned scientists as Kowalewsky (1885), Poincaré (1885a,b,c) and Dyson (1892, 1893). Each of them tackled the problem of an axially symmetric, homogeneous ring in equilibrium by expanding it about the thin ring limit. In particular, Dyson provided a solution to fourth order in the parameter <math>~\sigma = a/b</math>, where <math>~a = r_t</math> provides a measure for the radius of the cross-section of the ring and <math>~b = \varpi_t</math> the distance of the cross-section's centre of mass from the axis of rotation."

§7:   "In their work on homogeneous rings, Poincaré and Kowalewsky, whose results disagreed to first order, both had made mistakes as Dyson has shown. His result to fourth order is also erroneous as we point out in Appendix B."

  1. Shortly after their equation (3.2), Marcus, Press & Teukolsky make the following statement: "… we know that an equilibrium incompressible configuration must rotate uniformly on cylinders (the famous "Poincaré-Wavre" theorem, cf. Tassoul 1977, &Sect;4.3) …"


 

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation