Difference between revisions of "User:Tohline/2DStructure/ToroidalGreenFunction"

From VistrailsWiki
Jump to navigation Jump to search
Line 1,261: Line 1,261:
<math>~
<math>~
- 2Ga^2 (\cosh\eta - \cos\theta)^{1 / 2}  
- 2Ga^2 (\cosh\eta - \cos\theta)^{1 / 2}  
\sum\limits^\infty_{n=0} \epsilon_n 2\cos(m\psi)(-1)^m  ~\frac{\Gamma(n-m+\tfrac{1}{2})}{\Gamma(n + m + \tfrac{1}{2})}
\sum\limits^\infty_{n=0} \epsilon_n (-1)^m  ~\frac{\Gamma(n-m+\tfrac{1}{2})}{\Gamma(n + m + \tfrac{1}{2})}
\int d\eta^' ~P^m_{n-1 / 2}(\cosh\eta_<) ~Q^m_{n-1 / 2}(\cosh\eta_>)
\int d\eta^' ~P^m_{n-1 / 2}(\cosh\eta_<) ~Q^m_{n-1 / 2}(\cosh\eta_>)
\int d\theta^' \biggl[ \frac{ ~\sinh\eta^'}{(\cosh\eta^' - \cos\theta^')^{5/2}} \biggr]\cos[n(\theta - \theta^')]
\int d\theta^' \biggl[ \frac{ ~\sinh\eta^'}{(\cosh\eta^' - \cos\theta^')^{5/2}} \biggr]\cos[n(\theta - \theta^')]
Line 1,306: Line 1,306:
<tr>
<tr>
   <td align="center" colspan="3">
   <td align="center" colspan="3">
[http://adsabs.harvard.edu/abs/1999ApJ...527...86C Cohl &amp; Tohline (1999)], p. 88, Eqs. (31) &amp; (32a)
[http://adsabs.harvard.edu/abs/1999ApJ...527...86C Cohl &amp; Tohline (1999)], p. 293, Eq. (2.55)
   </td>
   </td>
</tr>
</tr>

Revision as of 21:33, 21 June 2018

Using Toroidal Coordinates to Determine the Gravitational Potential

NOTE:   An earlier version of this chapter has been shifted to our "Ramblings" Appendix.

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |


Here we build upon our accompanying review of the types of numerical techniques that various astrophysics research groups have developed to solve for the Newtonian gravitational potential, <math>~\Phi(\vec{x})</math>, given a specified, three-dimensional mass distribution, <math>~\rho(\vec{x})</math>. Our focus is on the use of toroidal coordinates to solve the integral formulation of the Poisson equation, namely,

<math>~ \Phi(\vec{x})</math>

<math>~=</math>

<math>~ -G \iiint \frac{\rho(\vec{x}^{~'})}{|\vec{x}^{~'} - \vec{x}|} d^3x^' \, .</math>

For the most part, we will adopt the notation used by C.-Y. Wong (1973, Annals of Physics, 77, 279); in an accompanying discussion, we review additional results from this insightful 1973 paper, as well as a paper of his that was published the following year in The Astrophysical Journal, namely, Wong (1974).

In order to accomplish this task, we first present the expressions that define how toroidal coordinates, <math>~(\eta,\theta,\psi)</math>, map to and from Cartesian coordinates <math>~(x, y, z)</math>, and present the toroidal-coordinate expression for the differential volume element, <math>~d^3 x</math>.

Basic Elements of a Toroidal Coordinate System

Given the meridional-plane coordinate location of a toroidal-coordinate system's axisymmetric anchor ring, <math>~(\varpi,z) = (a,Z_0)</math>, the relationship between toroidal coordinates <math>~(\eta,\theta,\psi) </math>and Cartesian coordinates <math>~(x, y, z)</math> is,

<math>~x</math>

<math>~=</math>

<math>~\frac{a \sinh\eta \cos\psi}{(\cosh\eta - \cos\theta)} \, ,</math>

<math>~y</math>

<math>~=</math>

<math>~\frac{a \sinh\eta \sin\psi}{(\cosh\eta - \cos\theta)} \, ,</math>

<math>~z - Z_0</math>

<math>~=</math>

<math>~\frac{a \sin\theta}{(\cosh\eta - \cos\theta)} \, .</math>

This set of coordinate relations appears as equations 2.1 - 2.3 in Wong (1973). This set of relations may also be found, for example, on p. 1301 within eq. (10.3.75) of [MF53]; in §14.19 of NIST's Digital Library of Mathematical Functions; or even within Wikipedia. (In most cases the implicit assumption is that <math>~Z_0 = 0</math>.)


Mapping the other direction [see equations 2.13 - 2.15 of Wong (1973) ], we have,

<math>~\eta</math>

<math>~=</math>

<math>~\ln\biggl(\frac{r_1}{r_2} \biggr) \, ,</math>

<math>~\cos\theta</math>

<math>~=</math>

<math>~\frac{(r_1^2 + r_2^2 - 4a^2)}{2r_1 r_2} \, ,</math>

<math>~\tan\psi</math>

<math>~=</math>

<math>~\frac{y}{x} \, ,</math>

where,

<math>~r_1^2 </math>

<math>~\equiv</math>

<math>~[(x^2 + y^2)^{1 / 2} + a]^2 + (z-Z_0)^2 \, ,</math>

<math>~r_2^2 </math>

<math>~\equiv</math>

<math>~[(x^2 + y^2)^{1 / 2} - a]^2 + (z-Z_0)^2 \, ,</math>

and <math>~\theta</math> has the same sign as <math>~(z-Z_0)</math>.

 

Comment by J. E. Tohline on 16 August 2017: In equation (2.17) of his §IIB — when Wong (1973) introduces the differential volume element — the variable used to represent the azimuthal coordinate angle switches from ψ to Φ. We will stick with the ψ notation, here.

According to p. 1301, eq. (10.3.75) of [MF53] — or, for example, as found in Wikipedia — in toroidal coordinates the differential volume element is,

<math>~d^3x</math>

<math>~=</math>

<math>~h_\eta h_\theta h_\psi d\eta d\theta d\psi</math>

<math>~=</math>

<math>~\biggl[ \frac{a^3 \sinh\eta}{(\cosh\eta - \cos\theta)^3} \biggr] d\eta~ d\theta~ d\psi \, .</math>

Selected Toroidal Function Relationships

Here, we draw from the set of toroidal function relationships that have been identified as "key equations" in our accompanying Equations appendix.

Beginning with the identified "Key Equation",

LSU Key.png

<math>~Q_{n-1 / 2}^m (\lambda)</math>

<math>~=</math>

<math>~(-1)^n \frac{\pi^{3/2}}{\sqrt{2}~ \Gamma(n-m+1 / 2)} (x^2-1)^{1 / 4} P_{m-1 / 2}^n(x) \, , </math>

Gil, Segura, & Temme (2000):  eq. (8)

where:    

<math>~\lambda \equiv x/\sqrt{x^2-1}</math>

we'll identify <math>~x</math> with <math>~\cosh\eta</math> — in which case we have <math>~\lambda = \coth\eta</math> — and switch the index notations, <math>~n \leftrightarrow m</math>. This gives,

<math>~Q_{m-1 / 2}^n (\coth\eta)</math>

<math>~=</math>

<math>~(-1)^m \frac{\pi^{3/2}}{\sqrt{2} ~\Gamma(m-n+\frac{1}{2})} (\sinh\eta)^{1 / 2} P_{n-1 / 2}^m(\cosh\eta) \, . </math>

Drawing upon the Euler reflection formula for gamma functions, namely,

LSU Key.png

<math>~ \Gamma(z) ~\Gamma(1-z) </math>

<math>~=</math>

<math>~ \frac{\pi}{\sin(\pi z)} </math>

<math>~\biggl|</math>

for example, if
<math>~z \rightarrow (m-n + \tfrac{1}{2})</math>

<math>~\Rightarrow ~~~\Gamma(m-n+\tfrac{1}{2})~\Gamma(n-m+\tfrac{1}{2})</math>

<math>~=</math>

<math>~\pi \biggl\{\sin\biggl[ \frac{\pi}{2} + \pi(m-n) \biggr] \biggr\}^{-1}</math>

 

<math>~=</math>

<math>~\pi (-1)^{m-n} </math>

DLMF §5.5(ii)

<math>~\biggl|</math>
Valid for:

   <math>~z \ne0, \pm 1, \pm 2, </math> …

<math>~\biggl|</math>

where it is understood that <math>~m</math> and <math>~n</math> are each either zero or a positive integer, this toroidal-function relation becomes,

<math>~Q_{m-1 / 2}^n (\coth\eta)</math>

<math>~=</math>

<math>~(-1)^m~ \frac{\pi^{3/2}}{\sqrt{2} } \biggl[ \frac{ \Gamma(n - m +\frac{1}{2}) }{ \pi (-1)^{m-n} } \biggr] (\sinh\eta)^{1 / 2} P_{n-1 / 2}^m(\cosh\eta) </math>

 

 

<math>~=</math>

<math>~ (-1)^n \sqrt{ \frac{\pi}{2} } ~\Gamma(n - m + \tfrac{1}{2} )(\sinh\eta)^{1 / 2} P_{n-1 / 2}^m(\cosh\eta) \, . </math>

Again, beginning with the identified "Key Equation",

LSU Key.png

<math>~Q_{n-1 / 2}^m (\lambda)</math>

<math>~=</math>

<math>~(-1)^n \frac{\pi^{3/2}}{\sqrt{2}~ \Gamma(n-m+1 / 2)} (x^2-1)^{1 / 4} P_{m-1 / 2}^n(x) \, , </math>

Gil, Segura, & Temme (2000):  eq. (8)

where:    

<math>~\lambda \equiv x/\sqrt{x^2-1}</math>

this time, without switching index notations, we'll identify <math>~x</math> with <math>~\coth\eta</math> — in which case we have <math>~\lambda = \cosh\eta</math>. This gives,

<math>~Q_{n-1 / 2}^m (\cosh\eta)</math>

<math>~=</math>

<math>~(-1)^n \frac{\pi^{3/2}}{\sqrt{2} ~\Gamma(n-m+\frac{1}{2})} \biggl( \frac{1}{\sinh\eta} \biggr)^{1 / 2} P_{m-1 / 2}^n(\coth\eta) \, . </math>

Drawing upon the same Euler reflection formula for gamma functions, as quoted above, this toroidal function relation can be rewritten as,

<math>~Q_{n-1 / 2}^m (\cosh\eta)</math>

<math>~=</math>

<math>~(-1)^n \frac{\pi^{3/2}}{\sqrt{2} } \biggl[ \frac{\Gamma(m-n+\frac{1}{2})}{\pi (-1)^{m-n}} \biggr] \biggl( \frac{1}{\sinh\eta} \biggr)^{1 / 2} P_{m-1 / 2}^n(\coth\eta) </math>

 

<math>~=</math>

<math>~(-1)^{-m}~ \sqrt{\frac{\pi}{2}} \biggl[ \frac{\Gamma(m-n+\frac{1}{2})}{\sqrt{\sinh\eta}} \biggr] P_{m-1 / 2}^n(\coth\eta) \, . </math>

Finally, calling upon the "Key Equation" relation,

LSU Key.png

<math>~ P_\nu^n(z) </math>

<math>~=</math>

<math>~ \frac{\Gamma(\nu + n + 1)}{\Gamma(\nu - n + 1)} P_\nu^{-n}(z) </math>

A. Erdélyi (1953):  Volume I, §3.3.1, p. 140, eq. (7)

making the index notation substitution, <math>~\nu \rightarrow (m-\tfrac{1}{2})</math>, and associating <math>~z</math> with <math>~ \coth\eta</math> gives,

<math>~P^n_{m-\frac{1}{2}}(\coth\eta)</math>

<math>~=</math>

<math>~\biggl[ \frac{\Gamma(m+n+\frac{1}{2})}{\Gamma(m-n+\frac{1}{2})} \biggr]P^{-n}_{m-\frac{1}{2}}(\coth\eta) \, .</math>

As a result, we can write,

<math>~Q_{n-1 / 2}^m (\cosh\eta)</math>

<math>~=</math>

<math>~(-1)^{-m}~ \sqrt{\frac{\pi}{2}} \biggl[ \frac{\Gamma(m+n+\frac{1}{2})}{\sqrt{\sinh\eta}} \biggr] P_{m-1 / 2}^{-n}(\coth\eta) </math>

 

<math>~\Rightarrow ~~~ P_{m-1 / 2}^{-n}(\coth\eta) </math>

<math>~=</math>

<math>~(-1)^m~\sqrt{\frac{2}{\pi}} \biggl[ \frac{\sqrt{\sinh\eta}}{\Gamma(m+n+\frac{1}{2})} \biggr] Q_{n-1 / 2}^m (\cosh\eta) \, . </math>

Green's Function Expression

As presented by Wong (1973)

Referencing [MF53], Wong (1973) states that, in toroidal coordinates, the Green's function is,

<math>~\frac{1}{|~\vec{x} - {\vec{x}}^{~'} ~|} </math>

<math>~=</math>

<math>~ \frac{1}{\pi a} \biggl[ (\cosh\eta - \cos\theta)(\cosh \eta^' - \cos\theta^') \biggr]^{1 /2 } \sum\limits^\infty_{m,n=0} (-1)^m \epsilon_m \epsilon_n ~\frac{\Gamma(n-m+\tfrac{1}{2})}{\Gamma(n + m + \tfrac{1}{2})} </math>

 

 

<math>~ \times \cos[m(\psi - \psi^')]\cos[n(\theta - \theta^')] ~\begin{cases}P^m_{n-1 / 2}(\cosh\eta) ~Q^m_{n-1 / 2}(\cosh\eta^') ~~~\eta^' > \eta \\P^m_{n-1 / 2}(\cosh\eta^') ~Q^m_{n-1 / 2}(\cosh\eta)~~~\eta^' < \eta \end{cases}\, , </math>

Wong (1973), p. 293, Eq. (2.53)
[see also: J. W. Bates (1997), p. 3685, Eq. (31)]
[see also: Cohl, Tohline, Rau, & Srivastava (2000), §6.2, Eq. (48)]

where, <math>~P^m_{n-1 / 2}, Q^m_{n-1 / 2}</math> are Associated Legendre Functions of the first and second kind with order <math>~n - \tfrac{1}{2}</math> and degree <math>~m</math> (toroidal harmonics), and <math>~\epsilon_m</math> is the Neumann factor, that is, <math>~\epsilon_0 = 1</math> and <math>~\epsilon_m = 2</math> for all <math>~m \ge 1</math>. This Green's function expression can indeed be found as eq. (10.3.81) on p. 1304 of [MF53], but it should be noted that the MF53 expression differs from Wong's in two respects (see footnote 2 on p. 370 of Cohl et al. (2000) for a proposed explanation): First, the factor, <math>~(-1)^m</math>, appears as <math>~(-i)^m</math> in MF53; and, second, in the term that is composed of a ratio of gamma functions, the denominator appears in MF53 as <math>~\Gamma(n - m + \tfrac{1}{2})</math>, whereas it should be <math>~\Gamma(n + m + \tfrac{1}{2})</math>, as presented here.

Rearranging Terms and Incorporating Special-Function Relations

Let's focus on the situation when <math>~\eta^' > \eta</math>, and begin rearranging or substituting terms.

<math>~\frac{1}{|~\vec{x} - {\vec{x}}^{~'} ~|} </math>

<math>~=</math>

<math>~ \frac{1}{\pi a} \biggl[ (\cosh\eta - \cos\theta)(\cosh \eta^' - \cos\theta^') \biggr]^{1 /2 } \sum\limits^\infty_{m=0} (-1)^m \epsilon_m \cos[m(\psi - \psi^')] </math>

 

 

<math>~ \times \sum\limits^\infty_{n=0} \epsilon_n \cos[n(\theta - \theta^')] ~\frac{\Gamma(n-m+\tfrac{1}{2})}{\Gamma(n + m + \tfrac{1}{2})} ~P^m_{n-1 / 2}(\cosh\eta) ~Q^m_{n-1 / 2}(\cosh\eta^') </math>

 

<math>~=</math>

<math>~ \frac{ [ (\cosh\eta - \cos\theta)(\cosh \eta^' - \cos\theta^')]^{1 /2 } }{\pi a \sqrt{\sinh\eta^'} \sqrt{\sinh\eta} } \sum\limits^\infty_{m=0} (-1)^m \epsilon_m \cos[m(\psi - \psi^')] </math>

 

 

<math>~ \times \sum\limits^\infty_{n=0} \epsilon_n \cos[n(\theta - \theta^')] \biggl\{ ~ \sqrt{ \frac{\pi}{2} }~\Gamma(n-m+\tfrac{1}{2}) \sqrt{\sinh\eta}~P^m_{n-1 / 2}(\cosh\eta) \biggl\}\biggr\{ ~\sqrt{ \frac{2}{\pi} }~\frac{\sqrt{\sinh\eta^'}}{\Gamma(n + m + \tfrac{1}{2})} Q^m_{n-1 / 2}(\cosh\eta^') \biggr\} </math>

The term contained within the first set of curly braces on the right-hand side of this expression can be replaced by the derived expression labeled , above, and simultaneously the term contained within the second set of curly braces can be replaced by the derived expression labeled . After making these substitutions, we have,

<math>~\frac{1}{|~\vec{x} - {\vec{x}}^{~'} ~|} </math>

<math>~=</math>

<math>~ \frac{ [ (\cosh\eta - \cos\theta)(\cosh \eta^' - \cos\theta^')]^{1 /2 } }{\pi a \sqrt{\sinh\eta^'} \sqrt{\sinh\eta} } \sum\limits^\infty_{m=0} (-1)^m \epsilon_m \cos[m(\psi - \psi^')] </math>

 

 

<math>~ \times \sum\limits^\infty_{n=0} \epsilon_n \cos[n(\theta - \theta^')] \biggl\{ ~ (-1)^{-n}Q^n_{m-1 / 2}(\coth\eta) \biggl\}\biggr\{ ~(-1)^{-m} P^{-n}_{m-1 / 2}(\coth\eta^') \biggr\} </math>

 

<math>~=</math>

<math>~ \frac{ [ (\cosh\eta - \cos\theta)(\cosh \eta^' - \cos\theta^')]^{1 /2 } }{\pi a \sqrt{\sinh\eta^'} \sqrt{\sinh\eta} } \sum\limits^\infty_{m=0} \epsilon_m \cos[m(\psi - \psi^')] </math>

 

 

<math>~ \times \sum\limits^\infty_{n=0} (-1)^{n} \epsilon_n \cos[n(\theta - \theta^')] Q^n_{m-1 / 2}(\coth\eta) P^{-n}_{m-1 / 2}(\coth\eta^') \, , </math>

where, in writing this last expression we have acknowledged that, since <math>~n</math> is either zero or a positive integer, <math>~(-1)^{-n} = (-1)^n</math>. Next we draw upon the "Key Equation" relation,

LSU Key.png

<math>~ Q_\nu[t t^' - (t^2-1)^{1 / 2} (t^{'2} - 1)^{1 / 2} \cos\psi] </math>

<math>~=</math>

<math>~ Q_\nu(t) P_\nu(t^') + 2\sum_{n=1}^\infty (-1)^n Q^n_\nu(t) P^{-n}_\nu(t^') \cos(n\psi) </math>

A. Erdélyi (1953):  Volume I, §3.11, p. 169, eq. (4)

Valid for:    

<math>~t, t^'</math>  real

       

<math>~1 < t^' < t</math>

       

<math>~\nu \ne -1, -2, -3, </math> …

       

<math>~\psi</math>   real

which, after making the substitutions, <math>~\nu \rightarrow (m - \tfrac{1}{2})</math> and <math>~\psi \rightarrow (\theta - \theta^')</math>, and incorporating the Neumann factor, <math>~\epsilon_n</math>, becomes,

<math>~ Q_{m - \frac{1}{2} }\ [t t^' - (t^2-1)^{1 / 2} (t^{'2} - 1)^{1 / 2} \cos(\theta- \theta^') ] </math>

<math>~=</math>

<math>~ \sum_{n=0}^\infty (-1)^n \epsilon_n Q^n_{m - \frac{1}{2} }(t) P^{-n}_{m - \frac{1}{2} }(t^') \cos[(n(\theta- \theta^')] \, . </math>

Finally, after making the associations, <math>~t \rightarrow \coth\eta</math> and <math>~t^' \rightarrow \coth\eta^'</math>, this last expression allows us to rewrite Wong's (1973) Green's function in a significantly more compact form, namely,

<math>~\frac{1}{|~\vec{x} - {\vec{x}}^{~'} ~|} </math>

<math>~=</math>

<math>~ \frac{ [ (\cosh\eta - \cos\theta)(\cosh \eta^' - \cos\theta^')]^{1 /2 } }{\pi a \sqrt{\sinh\eta^'} \sqrt{\sinh\eta} } \sum\limits^\infty_{m=0} \epsilon_m \cos[m(\psi - \psi^')] Q_{m - \frac{1}{2}}(\Chi) \, , </math>

where the argument, <math>~\Chi</math>, of the toroidal function, <math>~Q_{m - \frac{1}{2}}</math>, is,

<math>~\Chi</math>

<math>~\equiv</math>

<math>~ t t^' - (t^2-1)^{1 / 2} (t^{'2} - 1)^{1 / 2} \cos(\theta- \theta^') </math>

 

<math>~=</math>

<math>~ \coth\eta \coth\eta^' - (\coth^2\eta-1)^{1 / 2} (\coth^2\eta'- 1)^{1 / 2} \cos(\theta- \theta^') </math>

 

<math>~=</math>

<math>~ \frac{\cosh\eta \cosh\eta^'}{\sinh\eta \sinh\eta^'} - \biggl[ \frac{1}{\sinh^2\eta} \biggr]^{1 / 2} \biggl[ \frac{1}{\sinh^2\eta'}\biggr]^{1 / 2} \cos(\theta- \theta^') </math>

 

<math>~=</math>

<math>~ \frac{\cosh\eta \cosh\eta^' - \cos(\theta- \theta^') }{\sinh\eta \sinh\eta^'} \, . </math>

As Presented in Cohl & Tohline (1999)

This last, compact Green's function expression — which we have derived, here, from Wong's (1973) published Green's function by drawing strategically upon a variety of special function relations — precisely matches the "compact cylindrical Green's function expression" that has been derived independently by Cohl & Tohline (1999), namely,

<math>~ \frac{1}{|\vec{x} - \vec{x}^{~'}|}</math>

<math>~=</math>

<math>~ \frac{1}{\pi \sqrt{\varpi \varpi^'}} \sum_{m=0}^{\infty} \epsilon_m \cos[m(\psi - \psi^')] Q_{m- 1 / 2}(\Chi) </math>

 

Cohl & Tohline (1999), p. 88, Eq. (17)

 

<math>~=</math>

<math>~ \frac{1}{a\pi} \biggl[ \frac{(\cosh\eta^' - \cos\theta^')}{\sinh\eta^' } \frac{(\cosh\eta - \cos\theta)}{\sinh\eta } \biggr]^{1 / 2} \sum_{m=0}^{\infty} \epsilon_m \cos[m(\psi - \psi^')] Q_{m- 1 / 2}(\Chi) \, , </math>

where,

<math>~\Chi</math>

<math>~\equiv</math>

<math>~ \frac{(\varpi^')^2 + \varpi^2 + (z^' - z)^2}{2\varpi^' \varpi} </math>

<math>~=</math>

<math>~ \frac{\cosh\eta \cdot \cosh\eta^' - \cos(\theta^' - \theta) }{ \sinh\eta \cdot \sinh\eta^'} \, . </math>

   

Cohl & Tohline (1999), p. 88, Eq. (16)


Note from J. E. Tohline (June, 2018):  This is the first time that I have been able to formally demonstrate to myself that these two separately derived Green's function expressions are identical. See, however, the earlier identification of new addition theorems in association with equations (49) and (50) of Cohl et al. (2000).

Gravitational Potential

Quite generally, then, the gravitational potential can be obtained at any coordinate location, <math>~(\eta,\theta,\psi)</math> — both inside and outside of a specified mass distribution — by carrying out three nested spatial integrals over the product of:  <math>~\rho(\vec{x}^{~'})</math>, the differential volume element, and the Green's function as specified either by Wong (1973) or by Cohl & Tohline (1999).

In what follows we will make an effort to elucidate the pros and cons of adopting one Green's function expression over the other. In each case we begin by writing the expression for the potential in such a way that variations in the azimuthal coordinate, <math>~\psi</math>, are described by Fourier components, <math>~\Phi_m^{(1)}(\eta,\theta)</math> and <math>~\Phi_m^{(2)}(\eta,\theta)</math>, of the potential, such that,

<math>~\Phi(\vec{x}) = \tfrac{1}{2}\Phi_0^{(1)}(\eta,\theta) + \sum_{m=1}^\infty \cos (m\psi) \Phi_m^{(1)}(\eta,\theta) + \sum_{m=1}^\infty \sin (m\psi) \Phi_m^{(2)}(\eta,\theta) \, .</math>

Each Fourier component of the potential depends explicitly on the corresponding Fourier component of the density distribution, defined such that,

<math>~\rho(\vec{x}) = \tfrac{1}{2}\rho_0^{(1)}(\eta,\theta) + \sum_{m=1}^\infty \cos (m\psi) \rho_m^{(1)}(\eta,\theta) + \sum_{m=1}^\infty \sin (m\psi) \rho_m^{(2)}(\eta,\theta) \, .</math>

LaTeX mathematical expressions cut-and-pasted directly from
NIST's Digital Library of Mathematical Functions

As an additional primary point of reference, note that according to §1.8(i) of NIST's Digital Library of Mathematical Functions, a Fourier Series is defined as follows:

<math>~f(x)</math>

<math>~=</math>

<math>~\tfrac{1}{2}a_{0}+\sum^{\infty}_{n=1}\biggl[ a_{n}\cos\bigl(nx\bigr)+b_{n}\sin\bigl(nx\bigr) \biggr],</math>

<math>~a_n</math>

<math>~=</math>

<math>~\frac{1}{\pi}\int^{\pi}_{-\pi}f(x)\cos\bigl(nx\bigr)\mathrm{d}x,</math>

<math>~b_n</math>

<math>~=</math>

<math>~\frac{1}{\pi}\int^{\pi}_{-\pi}f(x)\sin\bigl(nx\bigr)\mathrm{d}x.</math>

Notice, therefore, that,

<math>~\rho_m^{(1)}(\eta,\theta)</math>

<math>~=</math>

<math>~\frac{1}{\pi}\int^{\pi}_{-\pi}\rho(\eta,\theta,\psi)\cos\bigl(m\psi\bigr)\mathrm{d}\psi,</math>

    and,    

<math>~\rho_m^{(2)}(\eta,\theta)</math>

<math>~=</math>

<math>~\frac{1}{\pi}\int^{\pi}_{-\pi}\rho(\eta,\theta,\psi)\sin\bigl(m\psi\bigr)\mathrm{d}\psi \, .</math>


The CT99 Expression for the Potential

In Three-Dimensional Generality

<math>~ \Phi(\eta,\theta,\psi)</math>

<math>~=</math>

<math>~ -G \iiint \rho(\eta^',\theta^',\psi^') \biggl\{ \frac{1}{|\vec{x}^{~'} - \vec{x}|} \biggr\} \biggl[ \frac{a^3 \sinh\eta^'}{(\cosh\eta^' - \cos\theta^')^3} \biggr] d\eta^'~ d\theta^'~ d\psi^' </math>

 

<math>~=</math>

<math>~ -\frac{Ga^2}{\pi} \int d\eta^' \int d\theta^' \int d\psi^' \iiint \rho(\eta^',\theta^',\psi^') \biggl[ \frac{\sinh\eta^'}{(\cosh\eta^' - \cos\theta^')^3} \biggr] </math>

 

 

<math>~ \times \biggl[ \frac{(\cosh\eta^' - \cos\theta^')}{\sinh\eta^' } \frac{(\cosh\eta - \cos\theta)}{\sinh\eta } \biggr]^{1 / 2} \sum_{m=0}^{\infty} \epsilon_m \cos[m(\psi - \psi^')] Q_{m- 1 / 2}(\Chi) </math>

 

<math>~=</math>

<math>~ -\frac{Ga^2}{\pi} \biggl[ \frac{(\cosh\eta - \cos\theta)}{\sinh\eta } \biggr]^{1 / 2} \sum_{m=0}^{\infty} \epsilon_m \int d\eta^' \int d\theta^' \biggl[ \frac{\sinh\eta^'}{(\cosh\eta^' - \cos\theta^')^5} \biggr]^{1 / 2} Q_{m- 1 / 2}(\Chi) \int d\psi^' \rho(\eta^',\theta^',\psi^') </math>

 

 

<math>~ \times [\cos(m\psi)\cos(m\psi^') + \sin(m\psi)\sin(m\psi^') ] </math>

 

<math>~=</math>

<math>~ -\frac{Ga^2}{\pi} \biggl[ \frac{(\cosh\eta - \cos\theta)}{\sinh\eta } \biggr]^{1 / 2} \biggl\{ \int d\eta^' \int d\theta^' \biggl[ \frac{\sinh\eta^'}{(\cosh\eta^' - \cos\theta^')^5} \biggr]^{1 / 2} Q_{- \frac{1}{2}}(\Chi) \int_{-\pi}^{\pi} d\psi^' \rho(\eta^',\theta^',\psi^') </math>

 

 

<math>~ + \sum_{m=1}^{\infty} 2\cos(m\psi) \int d\eta^' \int d\theta^' \biggl[ \frac{\sinh\eta^'}{(\cosh\eta^' - \cos\theta^')^5} \biggr]^{1 / 2} Q_{m- 1 / 2}(\Chi) \int_{-\pi}^\pi d\psi^' \rho(\eta^',\theta^',\psi^') \cos(m\psi^') </math>

 

 

<math>~ + \sum_{m=1}^{\infty} 2\sin(m\psi) \int d\eta^' \int d\theta^' \biggl[ \frac{\sinh\eta^'}{(\cosh\eta^' - \cos\theta^')^5} \biggr]^{1 / 2} Q_{m- 1 / 2}(\Chi) \int_{-\pi}^\pi d\psi^' \rho(\eta^',\theta^',\psi^') \sin(m\psi^') \biggr\} </math>

 

<math>~=</math>

<math>~ - Ga^2 \biggl[ \frac{(\cosh\eta - \cos\theta)}{\sinh\eta } \biggr]^{1 / 2} \biggl\{ \int d\eta^' \int d\theta^' \biggl[ \frac{\sinh\eta^'}{(\cosh\eta^' - \cos\theta^')^5} \biggr]^{1 / 2} Q_{- \frac{1}{2}}(\Chi) \rho_0^{(1)}(\eta^',\theta^') </math>

 

 

<math>~ + \sum_{m=1}^{\infty} 2\cos(m\psi) \int d\eta^' \int d\theta^' \biggl[ \frac{\sinh\eta^'}{(\cosh\eta^' - \cos\theta^')^5} \biggr]^{1 / 2} Q_{m- 1 / 2}(\Chi) \rho_m^{(1)}(\eta^',\theta^') </math>

 

 

<math>~ + \sum_{m=1}^{\infty} 2\sin(m\psi) \int d\eta^' \int d\theta^' \biggl[ \frac{\sinh\eta^'}{(\cosh\eta^' - \cos\theta^')^5} \biggr]^{1 / 2} Q_{m- 1 / 2}(\Chi) \rho_m^{(2)}(\eta^',\theta^') \biggr\} </math>

We conclude, therefore, that each one of the Fourier components of the gravitational potential is given by the expression,

<math>~\Phi_m^{(1),(2)}(\eta,\theta)</math>

<math>~=</math>

<math>~ - 2Ga^2 \biggl[ \frac{(\cosh\eta - \cos\theta)}{\sinh\eta } \biggr]^{1 / 2} \int d\eta^' \int d\theta^' \biggl[ \frac{\sinh\eta^'}{(\cosh\eta^' - \cos\theta^')^5} \biggr]^{1 / 2} Q_{m- 1 / 2}(\Chi) \rho_m^{(1),(2)}(\eta^',\theta^') \, , </math>

Cohl & Tohline (1999), p. 88, Eq. (20)

where, as above,

<math>~\Chi</math>

<math>~\equiv</math>

<math>~ \frac{\cosh\eta \cdot \cosh\eta^' - \cos(\theta^' - \theta) }{ \sinh\eta \cdot \sinh\eta^'} \, . </math>

For Axisymmetric Systems

For axisymmetric systems, the density distribution has no dependence on the azimuthal coordinate, <math>~\psi</math>. Hence, for all <math>~m > 0</math>, the Fourier components of the density, <math>~\rho_m^{(1),(2)}</math>, are zero. The only nonzero component is, <math>~\rho_0^{(1)}(\eta,\theta) = 2\rho(\eta,\theta)</math>. For axisymmetric systems, then, the gravitational potential is,

<math>~\Phi(\vec{x})</math>

<math>~=</math>

<math>~\tfrac{1}{2}\Phi_0^{(1)}(\eta,\theta)</math>

 

<math>~=</math>

<math>~ - 2Ga^2 \biggl[ \frac{(\cosh\eta - \cos\theta)}{\sinh\eta } \biggr]^{1 / 2} \int d\eta^' \int d\theta^' \biggl[ \frac{\sinh\eta^'}{(\cosh\eta^' - \cos\theta^')^5} \biggr]^{1 / 2} Q_{- 1 / 2}(\Chi) \rho(\eta^',\theta^') \, . </math>

Cohl & Tohline (1999), p. 88, Eqs. (31) & (32a)

Wong's Expression for the Potential

Fully Three-Dimensional Case

Employing Wong's (1973) Green's function expression, the gravitational potential for any three-dimensional matter distribution is,

<math>~ \Phi(\vec{x})</math>

<math>~=</math>

<math>~ -G \iiint \rho(\eta^',\theta^',\psi^') \biggl\{ \frac{1}{|\vec{x}^{~'} - \vec{x}|} \biggr\} \biggl[ \frac{a^3 \sinh\eta^'}{(\cosh\eta^' - \cos\theta^')^3} \biggr] d\eta^'~ d\theta^'~ d\psi^' </math>

 

<math>~=</math>

<math>~ - \frac{a^2G}{\pi} \int d\eta^' \int d\theta^' \int d\psi^' \biggl[ \frac{\rho(\eta^',\theta^',\psi^') ~\sinh\eta^'}{(\cosh\eta^' - \cos\theta^')^3} \biggr] \biggl[ (\cosh\eta - \cos\theta)(\cosh \eta^' - \cos\theta^') \biggr]^{1 /2 } \sum\limits^\infty_{n=0} \sum\limits^\infty_{m=0}(-1)^m \epsilon_m \epsilon_n ~\frac{\Gamma(n-m+\tfrac{1}{2})}{\Gamma(n + m + \tfrac{1}{2})} </math>

 

 

<math>~ \times \cos[m(\psi - \psi^')]\cos[n(\theta - \theta^')] ~P^m_{n-1 / 2}(\cosh\eta_<) ~Q^m_{n-1 / 2}(\cosh\eta_>) </math>

 

<math>~=</math>

<math>~ - \frac{a^2G}{\pi} (\cosh\eta - \cos\theta)^{1 / 2} \sum\limits^\infty_{n=0} \epsilon_n \sum\limits^\infty_{m=0}(-1)^m \epsilon_m ~\frac{\Gamma(n-m+\tfrac{1}{2})}{\Gamma(n + m + \tfrac{1}{2})} \int d\eta^' ~P^m_{n-1 / 2}(\cosh\eta_<) ~Q^m_{n-1 / 2}(\cosh\eta_>) </math>

 

 

<math>~ \times~ \int d\theta^' \biggl[ \frac{ ~\sinh\eta^'}{(\cosh\eta^' - \cos\theta^')^{5/2}} \biggr]\cos[n(\theta - \theta^')] \int d\psi^' \rho(\eta^',\theta^',\psi^') [\cos(m\psi)\cos(m\psi^') + \sin(m\psi) \sin(m\psi^')] </math>

 

<math>~=</math>

<math>~ - \frac{a^2G}{\pi} (\cosh\eta - \cos\theta)^{1 / 2} \sum\limits^\infty_{n=0} \epsilon_n \biggl\{ \int d\eta^' ~P_{n-1 / 2}(\cosh\eta_<) ~Q_{n-1 / 2}(\cosh\eta_>) \int d\theta^' \biggl[ \frac{ ~\sinh\eta^'}{(\cosh\eta^' - \cos\theta^')^{5/2}} \biggr]\cos[n(\theta - \theta^')] \int_{-\pi}^\pi d\psi^' \rho(\eta^',\theta^',\psi^') </math>

 

 

<math>~ +~ \sum\limits^\infty_{m=1} 2\cos(m\psi)(-1)^m ~\frac{\Gamma(n-m+\tfrac{1}{2})}{\Gamma(n + m + \tfrac{1}{2})} \int d\eta^' ~P^m_{n-1 / 2}(\cosh\eta_<) ~Q^m_{n-1 / 2}(\cosh\eta_>) \int d\theta^' \biggl[ \frac{ ~\sinh\eta^'}{(\cosh\eta^' - \cos\theta^')^{5/2}} \biggr]\cos[n(\theta - \theta^')] \int_{-\pi}^\pi d\psi^' \rho(\eta^',\theta^',\psi^') \cos(m\psi^') </math>

 

 

<math>~ +~ \sum\limits^\infty_{m=1} 2 \sin(m\psi)(-1)^m ~\frac{\Gamma(n-m+\tfrac{1}{2})}{\Gamma(n + m + \tfrac{1}{2})} \int d\eta^' ~P^m_{n-1 / 2}(\cosh\eta_<) ~Q^m_{n-1 / 2}(\cosh\eta_>) \int d\theta^' \biggl[ \frac{ ~\sinh\eta^'}{(\cosh\eta^' - \cos\theta^')^{5/2}} \biggr]\cos[n(\theta - \theta^')] \int_{-\pi}^\pi d\psi^' \rho(\eta^',\theta^',\psi^') \sin(m\psi^') \biggr\} </math>

 

<math>~=</math>

<math>~ - a^2G (\cosh\eta - \cos\theta)^{1 / 2} \sum\limits^\infty_{n=0} \epsilon_n \biggl\{ \int d\eta^' ~P_{n-1 / 2}(\cosh\eta_<) ~Q_{n-1 / 2}(\cosh\eta_>) \int d\theta^' \biggl[ \frac{ ~\sinh\eta^'}{(\cosh\eta^' - \cos\theta^')^{5/2}} \biggr]\cos[n(\theta - \theta^')] \rho_0^{(1)}(\eta^',\theta^') </math>

 

 

<math>~ +~ \sum\limits^\infty_{m=1} 2\cos(m\psi)(-1)^m ~\frac{\Gamma(n-m+\tfrac{1}{2})}{\Gamma(n + m + \tfrac{1}{2})} \int d\eta^' ~P^m_{n-1 / 2}(\cosh\eta_<) ~Q^m_{n-1 / 2}(\cosh\eta_>) \int d\theta^' \biggl[ \frac{ ~\sinh\eta^'}{(\cosh\eta^' - \cos\theta^')^{5/2}} \biggr]\cos[n(\theta - \theta^')] \rho_m^{(1)}(\eta^',\theta^') </math>

 

 

<math>~ +~ \sum\limits^\infty_{m=1} 2 \sin(m\psi)(-1)^m ~\frac{\Gamma(n-m+\tfrac{1}{2})}{\Gamma(n + m + \tfrac{1}{2})} \int d\eta^' ~P^m_{n-1 / 2}(\cosh\eta_<) ~Q^m_{n-1 / 2}(\cosh\eta_>) \int d\theta^' \biggl[ \frac{ ~\sinh\eta^'}{(\cosh\eta^' - \cos\theta^')^{5/2}} \biggr]\cos[n(\theta - \theta^')] \rho_m^{(2)} (\eta^',\theta^') \biggr\} \, . </math>

We conclude, therefore, that each one of the Fourier components of the gravitational potential is given by the expression,

<math>~\Phi_m^{(1),(2)} (\eta,\theta)</math>

<math>~=</math>

<math>~ - 2Ga^2 (\cosh\eta - \cos\theta)^{1 / 2} \sum\limits^\infty_{n=0} \epsilon_n (-1)^m ~\frac{\Gamma(n-m+\tfrac{1}{2})}{\Gamma(n + m + \tfrac{1}{2})} \int d\eta^' ~P^m_{n-1 / 2}(\cosh\eta_<) ~Q^m_{n-1 / 2}(\cosh\eta_>) \int d\theta^' \biggl[ \frac{ ~\sinh\eta^'}{(\cosh\eta^' - \cos\theta^')^{5/2}} \biggr]\cos[n(\theta - \theta^')] \rho_m^{(1),(2)}(\eta^',\theta^') \, . </math>

Axisymmetric Systems

For axisymmetric systems, the density distribution has no dependence on the azimuthal coordinate, <math>~\psi</math>. Hence, for all <math>~m > 0</math>, the Fourier components of the density, <math>~\rho_m^{(1),(2)}</math>, are zero. The only nonzero component is, <math>~\rho_0^{(1)}(\eta,\theta) = 2\rho(\eta,\theta)</math>. For axisymmetric systems, then, the gravitational potential is,

<math>~\Phi(\eta,\theta)</math>

<math>~=</math>

<math>~\tfrac{1}{2}\Phi_0^{(1)}(\eta,\theta)</math>

 

<math>~=</math>

<math>~ - 2Ga^2 (\cosh\eta - \cos\theta)^{1 / 2} \sum\limits^\infty_{n=0} \epsilon_n \int d\eta^' ~P^m_{n-1 / 2}(\cosh\eta_<) ~Q^m_{n-1 / 2}(\cosh\eta_>) \int d\theta^' \biggl[ \frac{ ~\sinh\eta^'}{(\cosh\eta^' - \cos\theta^')^{5/2}} \biggr]\cos[n(\theta - \theta^')] \rho(\eta^',\theta^') \, . </math>

Cohl & Tohline (1999), p. 293, Eq. (2.55)

See Also

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation