Difference between revisions of "User:Tohline/ThreeDimensionalConfigurations/ChallengesPt4"
Line 9: | Line 9: | ||
==Various Coordinate Frames== | ==Various Coordinate Frames== | ||
===Tipped Orbit Planes=== | |||
Example model parameters: <math>\frac{b}{a} = 1.25</math>, <math>\frac{c}{a} = 0.4703</math> | |||
====Summary==== | ====Summary==== | ||
Line 111: | Line 115: | ||
</tr> | </tr> | ||
</table> | </table> | ||
where, <math>~\beta</math> and <math>~\gamma</math> | where, as has also been specified [[User:Tohline/ThreeDimensionalConfigurations/ChallengesPt3#betagamma|defined in an accompanying discussion]], | ||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\beta</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- \biggl[ \frac{c^2}{a^2 + c^2} \biggr] \frac{\zeta_2}{\Omega_2} | |||
= | |||
+1.13451 | |||
</math> | |||
</td> | |||
<td align="center"> and, </td> | |||
<td align="right"> | |||
<math>~\gamma</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- \biggl[ \frac{b^2}{a^2 + b^2} \biggr] \frac{\zeta_3}{\Omega_3} | |||
= | |||
+1.80518\, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
Line 121: | Line 157: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\biggl[\frac{x_\mathrm{max}}{y_\mathrm{max}} \biggr]^ | <math>~\biggl[\frac{x_\mathrm{max}}{y_\mathrm{max}} \biggr]^4</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 128: | Line 164: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\frac{a^2}{b^ | \frac{a^4 (c^4 \gamma^2 \Omega_3^2 + b^4 \beta^2 \Omega_2^2)}{b^4 c^4(\gamma^2\Omega_3^2 + \beta^2\Omega_2^2)} | ||
= 1. | ~~~\Rightarrow ~~~\frac{x_\mathrm{max}}{y_\mathrm{max}} = 1.26218 \, , | ||
</math> | </math> | ||
</td> | </td> | ||
Line 136: | Line 172: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~{\dot\varphi}^ | <math>~{\dot\varphi}^4 </math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 143: | Line 179: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\ | \frac{a^4}{b^4 c^4} | ||
\ | \biggl(\gamma^2\Omega_3^2 + \beta^2\Omega_2^2 \biggr) | ||
= 1. | (c^4 \gamma^2 \Omega_3^2 + b^4 \beta^2 \Omega_2^2) | ||
~~~\Rightarrow ~~~ \dot\varphi = 1.59862\, , | |||
</math> | </math> | ||
</td> | </td> | ||
Line 152: | Line 189: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~y_c</math> | <math>~\frac{y_c}{z_0}</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 158: | Line 195: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
-\sin\theta | |||
~~~\Rightarrow~~~~ \frac{y_c}{z_0} = -0.92507 | |||
= | |||
\, .</math> | \, .</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
====Demonstration==== | ====Demonstration==== |
Revision as of 19:02, 30 April 2021
Challenges Constructing Ellipsoidal-Like Configurations (Pt. 4)
This chapter extends the accompanying chapters titled, Construction Challenges (Pt. 1), (Pt. 2), and (Pt. 3). The focus here is on firming up our understanding of the relationships between various "tilted" Cartesian coordinate frames.
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Various Coordinate Frames
Tipped Orbit Planes
Example model parameters: <math>\frac{b}{a} = 1.25</math>, <math>\frac{c}{a} = 0.4703</math>
Summary
In a separate discussion, we have shown that, as viewed from a frame that "tumbles" with the (purple) body of a Type 1 Riemann ellipsoid, each Lagrangian fluid element moves along an elliptical path in a plane that is tipped by an angle <math>~\theta</math> about the x-axis of the body. As viewed from the (primed) coordinates associated with this tipped plane, by definition, z' = constant and dz'/dt = 0, and the planar orbit is defined by the expression for an,
Off-Center Ellipse | ||
<math>~1</math> |
<math>~=</math> |
<math>~\biggl[\frac{x'}{x_\mathrm{max}} \biggr]^2 + \biggl[\frac{y' - y_c(z')}{y_\mathrm{max}} \biggr]^2 \, .</math> |
|
Notice that the offset, <math>~y_c</math>, is a function of the tipped plane's vertical coordinate, <math>~z'</math>. As a function of time, the x'-y' coordinates and associated velocity components of each Lagrangian fluid element are given by the expressions,
<math>~x'</math> |
<math>~=</math> |
<math>~x_\mathrm{max}\cos(\dot\varphi t)</math> |
and, |
<math>~y' - y_c</math> |
<math>~=</math> |
<math>~y_\mathrm{max}\sin(\dot\varphi t) \, ,</math> |
<math>~\dot{x}'</math> |
<math>~=</math> |
<math>~- x_\mathrm{max}~ \dot\varphi \cdot \sin(\dot\varphi t) = (y_c - y') \biggl[ \frac{x_\mathrm{max}}{y_\mathrm{max}} \biggr] \dot\varphi </math> |
and, |
<math>~\dot{y}' </math> |
<math>~=</math> |
<math>~y_\mathrm{max}~\dot\varphi \cdot \cos(\dot\varphi t) = x' \biggl[ \frac{y_\mathrm{max}}{x_\mathrm{max}}\biggr] \dot\varphi \, .</math> |
We have determined that (numerical value given for our chosen example Type I ellipsoid),
<math>~\tan\theta</math> |
<math>~=</math> |
<math>~ - \frac{b^2 \beta \Omega_2}{c^2 \gamma \Omega_3} = -2.43573\, , </math> |
where, as has also been specified defined in an accompanying discussion,
<math>~\beta</math> |
<math>~=</math> |
<math>~ - \biggl[ \frac{c^2}{a^2 + c^2} \biggr] \frac{\zeta_2}{\Omega_2} = +1.13451 </math> |
and, |
<math>~\gamma</math> |
<math>~=</math> |
<math>~ - \biggl[ \frac{b^2}{a^2 + b^2} \biggr] \frac{\zeta_3}{\Omega_3} = +1.80518\, . </math> |
START HERE
<math>~\biggl[\frac{x_\mathrm{max}}{y_\mathrm{max}} \biggr]^4</math> |
<math>~=</math> |
<math>~ \frac{a^4 (c^4 \gamma^2 \Omega_3^2 + b^4 \beta^2 \Omega_2^2)}{b^4 c^4(\gamma^2\Omega_3^2 + \beta^2\Omega_2^2)} ~~~\Rightarrow ~~~\frac{x_\mathrm{max}}{y_\mathrm{max}} = 1.26218 \, , </math> |
<math>~{\dot\varphi}^4 </math> |
<math>~=</math> |
<math>~ \frac{a^4}{b^4 c^4} \biggl(\gamma^2\Omega_3^2 + \beta^2\Omega_2^2 \biggr) (c^4 \gamma^2 \Omega_3^2 + b^4 \beta^2 \Omega_2^2) ~~~\Rightarrow ~~~ \dot\varphi = 1.59862\, , </math> |
<math>~\frac{y_c}{z_0}</math> |
<math>~=</math> |
<math>~ -\sin\theta ~~~\Rightarrow~~~~ \frac{y_c}{z_0} = -0.92507 \, .</math> |
Demonstration
See Also
- Riemann Type 1 Ellipsoids
- Construction Challenges (Pt. 1)
- Construction Challenges (Pt. 2)
- Construction Challenges (Pt. 3)
- Construction Challenges (Pt. 4)
- Related discussions of models viewed from a rotating reference frame:
- PGE
- NOTE to Eric Hirschmann & David Neilsen... I have moved the earlier contents of this page to a new Wiki location called Compressible Riemann Ellipsoids.
© 2014 - 2021 by Joel E. Tohline |