Difference between revisions of "User:Tohline/ThreeDimensionalConfigurations/ChallengesPt4"

From VistrailsWiki
Jump to navigation Jump to search
Line 9: Line 9:
==Various Coordinate Frames==
==Various Coordinate Frames==


===Tipped Orbit Planes===
Example model parameters:  <math>\frac{b}{a} = 1.25</math>,  <math>\frac{c}{a} = 0.4703</math>


====Summary====
====Summary====
Line 111: Line 115:
</tr>
</tr>
</table>
</table>
where, <math>~\beta</math> and <math>~\gamma</math> are as [[User:Tohline/ThreeDimensionalConfigurations/ChallengesPt3#betagamma|defined in an accompanying discussion]]. Also,
where, as has also been specified [[User:Tohline/ThreeDimensionalConfigurations/ChallengesPt3#betagamma|defined in an accompanying discussion]],
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\beta</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- \biggl[ \frac{c^2}{a^2 + c^2} \biggr] \frac{\zeta_2}{\Omega_2}
=
+1.13451
</math>
  </td>
<td align="center">&nbsp; &nbsp; &nbsp; and, &nbsp; &nbsp; &nbsp; </td>
  <td align="right">
<math>~\gamma</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- \biggl[ \frac{b^2}{a^2 + b^2} \biggr] \frac{\zeta_3}{\Omega_3}
=
+1.80518\, .
</math>
  </td>
</tr>
</table>




Line 121: Line 157:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\biggl[\frac{x_\mathrm{max}}{y_\mathrm{max}}  \biggr]^2</math>
<math>~\biggl[\frac{x_\mathrm{max}}{y_\mathrm{max}}  \biggr]^4</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 128: Line 164:
   <td align="left">
   <td align="left">
<math>~
<math>~
\frac{a^2}{b^2 c^2}  (c^2\cos^2\theta + b^2\sin^2\theta)  
\frac{a^4 (c^4 \gamma^2 \Omega_3^2 + b^4 \beta^2 \Omega_2^2)}{b^4 c^4(\gamma^2\Omega_3^2 + \beta^2\Omega_2^2)}
= 1.05238 \, ,
~~~\Rightarrow ~~~\frac{x_\mathrm{max}}{y_\mathrm{max}}  = 1.26218 \, ,
</math>
</math>
   </td>
   </td>
Line 136: Line 172:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~{\dot\varphi}^2 </math>
<math>~{\dot\varphi}^4 </math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 143: Line 179:
   <td align="left">
   <td align="left">
<math>~
<math>~
\zeta_3^2\biggl[ \frac{b^2}{a^2 + b^2} \biggr]^2  
\frac{a^4}{b^4 c^4}
\biggl[ \frac{x_\mathrm{max}}{y_\mathrm{max}} \biggr]^2 \biggl[1 + \tan^2\theta \biggr]
\biggl(\gamma^2\Omega_3^2 + \beta^2\Omega_2^2 \biggr)
= 1.68818\, ,
(c^4 \gamma^2 \Omega_3^2 + b^4 \beta^2 \Omega_2^2)
~~~\Rightarrow ~~~ \dot\varphi = 1.59862\, ,
</math>
</math>
   </td>
   </td>
Line 152: Line 189:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~y_c</math>
<math>~\frac{y_c}{z_0}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 158: Line 195:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~+ \frac{z' b^2 \tan\theta}{c^2 \cos^2\theta + b^2\sin^2\theta}
<math>~
=
-\sin\theta
+z' \tan\theta  \biggl[\frac{y_\mathrm{max}}{x_\mathrm{max}}  \biggr]^2 \frac{a^2}{c^2}
~~~\Rightarrow~~~~ \frac{y_c}{z_0} = -0.92507
=
\biggl( \frac{z'}{ \cos\theta }\biggr)(-1.40038)
\, .</math>
\, .</math>
   </td>
   </td>
</tr>
</tr>
</table>
</table>
Note that this last expression has been obtained by making the substitutions, <math>~y_0 \rightarrow y_c</math> and <math>~z_0 \rightarrow -z'/\cos\theta</math>, in the [[User:Tohline/ThreeDimensionalConfigurations/ChallengesPt2#OffCenter|accompanying derivation's expression]] for <math>~y_0</math>.


====Demonstration====
====Demonstration====

Revision as of 19:02, 30 April 2021

Challenges Constructing Ellipsoidal-Like Configurations (Pt. 4)

This chapter extends the accompanying chapters titled, Construction Challenges (Pt. 1), (Pt. 2), and (Pt. 3). The focus here is on firming up our understanding of the relationships between various "tilted" Cartesian coordinate frames.

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Various Coordinate Frames

Tipped Orbit Planes

Example model parameters: <math>\frac{b}{a} = 1.25</math>, <math>\frac{c}{a} = 0.4703</math>

Summary

In a separate discussion, we have shown that, as viewed from a frame that "tumbles" with the (purple) body of a Type 1 Riemann ellipsoid, each Lagrangian fluid element moves along an elliptical path in a plane that is tipped by an angle <math>~\theta</math> about the x-axis of the body. As viewed from the (primed) coordinates associated with this tipped plane, by definition, z' = constant and dz'/dt = 0, and the planar orbit is defined by the expression for an,

Off-Center Ellipse

<math>~1</math>

<math>~=</math>

<math>~\biggl[\frac{x'}{x_\mathrm{max}} \biggr]^2 + \biggl[\frac{y' - y_c(z')}{y_\mathrm{max}} \biggr]^2 \, .</math>

Tipped Orbit Frame (yellow, primed)

Tipped Orbital Planes

Given that b/a = 1.25 and c/a = 0.4703 for our chosen Example Type I Ellipsoid, we find that, <math>~\theta = - 1.18122 ~\mathrm{rad} = -67.68^\circ</math>.

Notice that the offset, <math>~y_c</math>, is a function of the tipped plane's vertical coordinate, <math>~z'</math>. As a function of time, the x'-y' coordinates and associated velocity components of each Lagrangian fluid element are given by the expressions,

<math>~x'</math>

<math>~=</math>

<math>~x_\mathrm{max}\cos(\dot\varphi t)</math>

      and,      

<math>~y' - y_c</math>

<math>~=</math>

<math>~y_\mathrm{max}\sin(\dot\varphi t) \, ,</math>

<math>~\dot{x}'</math>

<math>~=</math>

<math>~- x_\mathrm{max}~ \dot\varphi \cdot \sin(\dot\varphi t) = (y_c - y') \biggl[ \frac{x_\mathrm{max}}{y_\mathrm{max}} \biggr] \dot\varphi </math>

      and,      

<math>~\dot{y}' </math>

<math>~=</math>

<math>~y_\mathrm{max}~\dot\varphi \cdot \cos(\dot\varphi t) = x' \biggl[ \frac{y_\mathrm{max}}{x_\mathrm{max}}\biggr] \dot\varphi \, .</math>

We have determined that (numerical value given for our chosen example Type I ellipsoid),

<math>~\tan\theta</math>

<math>~=</math>

<math>~ - \frac{b^2 \beta \Omega_2}{c^2 \gamma \Omega_3} = -2.43573\, , </math>

where, as has also been specified defined in an accompanying discussion,

<math>~\beta</math>

<math>~=</math>

<math>~ - \biggl[ \frac{c^2}{a^2 + c^2} \biggr] \frac{\zeta_2}{\Omega_2} = +1.13451 </math>

      and,      

<math>~\gamma</math>

<math>~=</math>

<math>~ - \biggl[ \frac{b^2}{a^2 + b^2} \biggr] \frac{\zeta_3}{\Omega_3} = +1.80518\, . </math>


START HERE


<math>~\biggl[\frac{x_\mathrm{max}}{y_\mathrm{max}} \biggr]^4</math>

<math>~=</math>

<math>~ \frac{a^4 (c^4 \gamma^2 \Omega_3^2 + b^4 \beta^2 \Omega_2^2)}{b^4 c^4(\gamma^2\Omega_3^2 + \beta^2\Omega_2^2)} ~~~\Rightarrow ~~~\frac{x_\mathrm{max}}{y_\mathrm{max}} = 1.26218 \, , </math>

<math>~{\dot\varphi}^4 </math>

<math>~=</math>

<math>~ \frac{a^4}{b^4 c^4} \biggl(\gamma^2\Omega_3^2 + \beta^2\Omega_2^2 \biggr) (c^4 \gamma^2 \Omega_3^2 + b^4 \beta^2 \Omega_2^2) ~~~\Rightarrow ~~~ \dot\varphi = 1.59862\, , </math>

<math>~\frac{y_c}{z_0}</math>

<math>~=</math>

<math>~ -\sin\theta ~~~\Rightarrow~~~~ \frac{y_c}{z_0} = -0.92507 \, .</math>

Demonstration

See Also


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation