Difference between revisions of "User:Tohline/SSC/Stability/BiPolytrope0 0CompareApproaches"

From VistrailsWiki
Jump to navigation Jump to search
Line 21: Line 21:


==Key Attributes of Equilibrium Configurations==
==Key Attributes of Equilibrium Configurations==
===Physical Properties===


Aside from specifying its radius, <math>~R</math>, and total mass, <math>~M_\mathrm{tot}</math>, there are three particularly interesting ''dimensionless'' parameters that characterize the internal structure of a bipolytrope having <math>~(n_c,n_e) = (0,0)</math>.  They are, the radial location of the core/envelope interface,
Aside from specifying its radius, <math>~R</math>, and total mass, <math>~M_\mathrm{tot}</math>, there are three particularly interesting ''dimensionless'' parameters that characterize the internal structure of a bipolytrope having <math>~(n_c,n_e) = (0,0)</math>.  They are, the radial location of the core/envelope interface,
Line 47: Line 48:
</table>
</table>
</div>
</div>
It is also relatively straightforward to appreciate that, in dimensional units, the value of the central density is,
<div align="center">
<table border="0" cellpadding="5" align="center">


<tr>
  <td align="right">
<math>~\rho_c</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{3M_\mathrm{tot}}{4\pi G R^3} \cdot \frac{\nu}{q^3} \, .</math>
  </td>
</tr>
</table>
</div>


[[User:Tohline/SSC/Structure/BiPolytropes/Analytic0_0#gdefinition|Our study of equilibrium configurations has shown]] that once, for example, the pair of parameters, <math>~q</math> and <math>~\rho_e/\rho_c</math>, has been specified, other properties of the associated equilibrium configuration can be succinctly expressed in terms of the function,
[[User:Tohline/SSC/Structure/BiPolytropes/Analytic0_0#gdefinition|Our study of equilibrium configurations has shown]] that once, for example, the pair of parameters, <math>~q</math> and <math>~\rho_e/\rho_c</math>, has been specified, other properties of the associated equilibrium configuration can be succinctly expressed in terms of the function,
Line 62: Line 79:
   <td align="left">
   <td align="left">
<math>
<math>
1  + \biggl(\frac{\rho_e}{\rho_0}\biggr)  \biggl[ 2 \biggl(1 - \frac{\rho_e}{\rho_0} \biggr) \biggl( 1-q \biggr) +  
1  + \biggl(\frac{\rho_e}{\rho_c}\biggr)  \biggl[ 2 \biggl(1 - \frac{\rho_e}{\rho_c} \biggr) \biggl( 1-q \biggr) +  
\frac{\rho_e}{\rho_0} \biggl(\frac{1}{q^2} - 1\biggr) \biggr] \, .
\frac{\rho_e}{\rho_c} \biggl(\frac{1}{q^2} - 1\biggr) \biggr] \, .
</math>
</math>
  </td>
</tr>
</table>
</div>
For example, the central pressure is given by the expression,
<div align="center">
<table border="0">
<tr>
  <td align="right">
<math>~P_c</math>
  </td>
  <td align="center">
&nbsp; <math>~=</math>&nbsp;
  </td>
  <td align="left">
<math>\biggl( \frac{3}{2^3\pi} \biggr) \frac{\nu^2 g^2}{q^4} \biggl[ \frac{GM_\mathrm{tot}^2}{R^4} \biggr] \, .</math>
   </td>
   </td>
</tr>
</tr>
Line 70: Line 103:
</div>
</div>


 
===Sequences===
<table border="1" cellpadding="8" align="right">
<table border="0" cellpadding="10" align="right"><tr><td align="center">
<table border="1" cellpadding="8" align="center">
<tr>
<tr>
   <td align="center"><b>Figure 1:</b><br />Equilibrium Sequences of Constant <math>~\rho_e/\rho_c</math></td>
   <td align="center"><b>Figure 1:</b><br />Equilibrium Sequences of Constant <math>~\rho_e/\rho_c</math></td>
Line 81: Line 115:
</tr>
</tr>
</table>
</table>
</td></tr></table>
Across the two-dimensional, <math>~(q,\nu)</math> parameter space that is defined by the full range of physically viable values of <math>~q</math> and <math>~\nu</math>, namely,
Across the two-dimensional, <math>~(q,\nu)</math> parameter space that is defined by the full range of physically viable values of <math>~q</math> and <math>~\nu</math>, namely,
<div align="center">
<div align="center">
<math>~0 \le q \le 1 \, ,</math>&nbsp; &nbsp; &nbsp; and &nbsp; &nbsp; &nbsp; <math>~0 \le \nu \le 1 \, ,</math>
<math>~0 \le q \le 1 \, ,</math>&nbsp; &nbsp; &nbsp; and &nbsp; &nbsp; &nbsp; <math>~0 \le \nu \le 1 \, ,</math>
</div>
</div>
an equilibrium model ''sequence'' can be defined by, for example, specifying that all models along the sequence have the same density jump at the interface.  Drawing on the above constraint relation, each choice of <math>~\rho_e/\rho_c</math> will generate a sequence governed by the function,
an equilibrium model ''sequence'' can be defined by, for example, specifying that all models along the sequence have the same density jump at the interface.  Drawing on the above constraint relation, each choice of <math>~\rho_e/\rho_c</math> will generate a sequence governed by the function,
<div align="center">
<div align="center">
Line 114: Line 151:
</table>
</table>
</div>
</div>
Figure 1 displays several such equilibrium sequences across the <math>~(q,\nu)</math> plane &#8212; see also a [[User:Tohline/SSC/Structure/BiPolytropes/Analytic0_0#Illustration|related figure associated with our free-energy determination of stability]].
Figure 1 displays several such equilibrium sequences across the <math>~(q,\nu)</math> plane &#8212; see also a [[User:Tohline/SSC/Structure/BiPolytropes/Analytic0_0#Illustration|related figure associated with our free-energy determination of stability]]. We have employed a free-energy analysis (see summary, below) to examine whether a transition from stable to unstable configurations is encountered while traversing &#8212; that is, while ''evolving'' along &#8212; such a sequence.
 
<table border="0" cellpadding="10" align="left"><tr><td align="center">
<table border="1" cellpadding="8" align="left">
<tr>
  <td align="center"><b>Figure 2:</b><br />Analytic Eigenvector Constraint</td>
</tr>
<tr>
  <td align="center">
[[File:EigenvectorSequence.png|300px|Analytic Eigenvector Sequence]]
  </td>
</tr>
</table>
</td></tr></table>
In a separate search for eigenvectors that simultaneously satisfy the linear adiabatic wave equation (LAWE) for the core and the LAWE for the envelope (see summary, below), we discovered that eigenvectors for some radial modes of oscillation can be specified ''fully analytically'' along a sequence of equilibrium models that is defined by the following constraint:
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~g^2</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~1  + 2\biggl(\frac{\rho_e}{\rho_c}\biggr)  - 3\biggl(\frac{\rho_e}{\rho_c}\biggr)^2 
\, ,
</math>
  </td>
</tr>
</table>
</div>
which is equivalent to demanding that,
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\nu</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\tfrac{1}{3}(1+2q^3) \, .</math>
  </td>
</tr>
</table>
</div>


=Related Discussions=
=Related Discussions=

Revision as of 23:55, 6 January 2017

Comparing Stability Analyses of Zero-Zero Bipolytropes

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |


In separate chapters we have discussed the following interrelated aspects of Bipolytropes that have <math>~(n_c,n_e) = (0,0)</math>:

Building on these separate discussions, here we examine what might be learned from a comparison of the two traditional approaches to stability analysis, namely:  (1) solutions of the LAWE, and (2) a free-energy analysis.

Key Attributes of Equilibrium Configurations

Physical Properties

Aside from specifying its radius, <math>~R</math>, and total mass, <math>~M_\mathrm{tot}</math>, there are three particularly interesting dimensionless parameters that characterize the internal structure of a bipolytrope having <math>~(n_c,n_e) = (0,0)</math>. They are, the radial location of the core/envelope interface,

<math>~q \equiv \frac{r_i}{R} \, ;</math>

the ratio of the density of the envelope material to the density of the core, <math>~0 \le \rho_e/\rho_c \le 1</math>; and the fraction of the total mass that is contained in the core,

<math>~\nu \equiv \frac{M_\mathrm{core}}{M_\mathrm{tot}} \, .</math>

Identifying a unique bipolytropic configuration requires the specification of two of these three dimensionless parameters; the third parameter is, then, necessarily determined via the algebraic relation,

<math>~\frac{\rho_e}{\rho_c} </math>

<math>=</math>

<math>~\frac{q^3(1-\nu)}{\nu(1-q^3)} \, .</math>

It is also relatively straightforward to appreciate that, in dimensional units, the value of the central density is,

<math>~\rho_c</math>

<math>~=</math>

<math>~\frac{3M_\mathrm{tot}}{4\pi G R^3} \cdot \frac{\nu}{q^3} \, .</math>

Our study of equilibrium configurations has shown that once, for example, the pair of parameters, <math>~q</math> and <math>~\rho_e/\rho_c</math>, has been specified, other properties of the associated equilibrium configuration can be succinctly expressed in terms of the function,

<math>~g^2</math>

<math>~\equiv</math>

<math> 1 + \biggl(\frac{\rho_e}{\rho_c}\biggr) \biggl[ 2 \biggl(1 - \frac{\rho_e}{\rho_c} \biggr) \biggl( 1-q \biggr) + \frac{\rho_e}{\rho_c} \biggl(\frac{1}{q^2} - 1\biggr) \biggr] \, . </math>

For example, the central pressure is given by the expression,

<math>~P_c</math>

  <math>~=</math> 

<math>\biggl( \frac{3}{2^3\pi} \biggr) \frac{\nu^2 g^2}{q^4} \biggl[ \frac{GM_\mathrm{tot}^2}{R^4} \biggr] \, .</math>

Sequences

Figure 1:
Equilibrium Sequences of Constant <math>~\rho_e/\rho_c</math>

Constant Density Sequences

Across the two-dimensional, <math>~(q,\nu)</math> parameter space that is defined by the full range of physically viable values of <math>~q</math> and <math>~\nu</math>, namely,

<math>~0 \le q \le 1 \, ,</math>      and       <math>~0 \le \nu \le 1 \, ,</math>


an equilibrium model sequence can be defined by, for example, specifying that all models along the sequence have the same density jump at the interface. Drawing on the above constraint relation, each choice of <math>~\rho_e/\rho_c</math> will generate a sequence governed by the function,

<math>~\nu</math>

<math>=</math>

<math>~\biggl[\frac{(1-q^3)}{q^3} \biggl( \frac{\rho_e}{\rho_c} \biggr) + 1\biggr]^{-1} </math>

 

<math>=</math>

<math>~\frac{q^3}{q^3 + (1-q^3)(\rho_e/\rho_c)} </math>

Figure 1 displays several such equilibrium sequences across the <math>~(q,\nu)</math> plane — see also a related figure associated with our free-energy determination of stability. We have employed a free-energy analysis (see summary, below) to examine whether a transition from stable to unstable configurations is encountered while traversing — that is, while evolving along — such a sequence.

Figure 2:
Analytic Eigenvector Constraint

Analytic Eigenvector Sequence

In a separate search for eigenvectors that simultaneously satisfy the linear adiabatic wave equation (LAWE) for the core and the LAWE for the envelope (see summary, below), we discovered that eigenvectors for some radial modes of oscillation can be specified fully analytically along a sequence of equilibrium models that is defined by the following constraint:

<math>~g^2</math>

<math>~\equiv</math>

<math>~1 + 2\biggl(\frac{\rho_e}{\rho_c}\biggr) - 3\biggl(\frac{\rho_e}{\rho_c}\biggr)^2 \, , </math>

which is equivalent to demanding that,

<math>~\nu</math>

<math>~=</math>

<math>~\tfrac{1}{3}(1+2q^3) \, .</math>

Related Discussions

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation