User:Tohline/SSC/Stability/BiPolytrope0 0CompareApproaches
From VisTrailsWiki
Contents 
Comparing Stability Analyses of ZeroZero Bipolytropes
 Tiled Menu  Tables of Content  Banner Video  Tohline Home Page  
In separate chapters we have discussed the following interrelated aspects of Bipolytropes that have :
 Using a detailed forcebalance analysis to develop an analytic description of their equilibrium structure
 Using a freeenergy analysis to analytically identify the properties of equilibrium structures; see also, an explicit, analytic evaluation of the statement of Virial Equilibrium
 Developing the Linear Adiabatic Wave Equation (LAWE) as it applies separately to the core and to the envelope of zerozero bipolytropic configurations
 Identifying a method to analytically solve the matching LAWEs for a certain subset of configurations
 A summary of this solution technique, along with the first illustrative analytic specification of an eigenvector
 The derivation of analytically specifiable eigenvectors having a variety of mode quantum numbers
 A freeenergy analysis of the global stability of zerozero bipolytropes
Building on these separate discussions, here we examine what might be learned from a comparison of the two traditional approaches to stability analysis, namely: (1) solutions of the LAWE, and (2) a freeenergy analysis.
Key Attributes of Equilibrium Configurations
Physical Properties
Aside from specifying its radius, , and total mass, , there are three particularly interesting dimensionless parameters that characterize the internal structure of a bipolytrope having . They are, the radial location of the core/envelope interface,
the ratio of the density of the envelope material to the density of the core, ; and the fraction of the total mass that is contained in the core,
Identifying a unique bipolytropic configuration requires the specification of two of these three dimensionless parameters; the third parameter is, then, necessarily determined via what we will refer to as the,
Primary Algebraic Constraint

= 

It is also relatively straightforward to appreciate that, in dimensional units, the value of the central density is,



Our study of equilibrium configurations has shown that once, for example, the pair of parameters, and , has been specified, other properties of the associated equilibrium configuration can be succinctly expressed in terms of the function,



For example, the central pressure is given by the expression,



Sequences

Across the twodimensional, parameter space that is defined by the full range of physically viable values of and , namely,
and
an equilibrium model sequence can be defined by, for example, specifying that all models along the sequence have the same density jump at the interface. Drawing on the above primary algebraic constraint, each choice of will generate a sequence governed by the function,

= 


= 

Figure 1 displays several such equilibrium sequences across the plane — see also a related figure associated with our freeenergy determination of stability. The curves show how varies with along sequences for which the specified density ratio is (blue), (green), and (maroon). We have employed a freeenergy analysis (see summary, below) to examine whether a transition from stable to unstable configurations is encountered while traversing — that is, while evolving along — such sequences.

In a separate search for eigenvectors that simultaneously satisfy the linear adiabatic wave equation (LAWE) for the core and the LAWE for the envelope (see summary, below), we discovered that eigenvectors for some radial modes of oscillation can be specified fully analytically along a sequence of equilibrium models that is defined by what we will refer to as the,
Analytic Eigenvector Constraint



When combined with the above primary algebraic constraint, this is equivalent to demanding that,



and, simultaneously,



The behavior of these two functions is displayed in Figure 2; the variation of with is traced by the dark blue squares while the variation of with is marked by the small, circular black dots.
Radial Oscillation Frequencies
In a separate chapter, we have summarized some of the quantitative characteristics of five radial oscillation modes that we have determined analytically for bipolytropes that have . Table 1 details some of these characteristics; among them is the dimensionless oscillation frequency,
Table 1  
Quantum Numbers  
2  1  0.794385  0.668  2.254  1.194  16.45 
2  2  0.768375  0.636  1.046  1.209  34.37 
3  1  0.396061  0.375  1.023  1.344  12.17 
3  2  0.594040  0.473  1.025  1.056  34.20 
3  3  0.645515  0.513  1.325  1.840  65.97 
Our freeenergy analysis of these bipolytropic configurations has shown that each model's characteristic radial oscillation frequency is given by the expression,



where,



Here we will restrict our discussion to models that obey the analytic eigenvector constraint, in which case,





















and,















Hence,












where, making this last step, we have replaced the leading factor of with its (above) expression in terms of .
Analysis
If we hold and fixed, at what value of does the Freeenergy frequency go to zero? The answer is as follows.









Table 2  
from Table 1  Global Stability  
Quantum Numbers  ?  
2  1  0.794385  0.668  2.254  1.194  16.45  S  1.358 
2  2  0.768375  0.636  1.046  1.209  34.37  U  1.361 
3  1  0.396061  0.375  1.023  1.344  12.17  U  1.318 
3  2  0.594040  0.473  1.025  1.056  34.20  U  1.520 
3  3  0.645515  0.513  1.325  1.840  65.97  S  1.075 
Related Discussions
© 2014  2020 by Joel E. Tohline 