User:Tohline/ThreeDimensionalConfigurations/FerrersPotential
From VisTrailsWiki
Contents 
Ferrers (1877) Gravitational Potential for Inhomogeneous Ellipsoids
 Tiled Menu  Tables of Content  Banner Video  Tohline Home Page  
In an accompanying chapter titled, Properties of Homogeneous Ellipsoids (1), we have shown how analytic expressions may be derived for the gravitational potential inside of uniformdensity ellipsoids. In that discussion, we largely followed the derivations of EFE. In the latter part of the nineteenthcentury, N. M. Ferrers, (1877, Quarterly Journal of Pure and Applied Mathematics, 14, 1  22) showed that very similar analytic expressions can be derived for ellipsoids that have certain, specific inhomogeneous mass distributions. Here we specifically discuss the case of configurations that exhibit concentric ellipsoidal isodensity surfaces of the form,



SUMMARY — copied from accompanying, Trial #2 Discussion  
After studying the relevant sections of both EFE and BT87 — this is an example of a heterogeneous density distribution whose gravitational potential has an analytic prescription. As is discussed in a separate chapter, the potential that it generates is sometimes referred to as a Ferrers potential, for the exponent, n = 1. In our accompanying discussion we find that,
where,
More specifically, in the three cases where the indices, ,

Derivation
Other references to Ferrers Potential:

Following §2.3.2 (beginning on p. 60) of BT87, let's examine inhomogeneous configurations whose isodensity surfaces (including the surface, itself) are defined by triaxial ellipsoids on which the Cartesian coordinates satisfy the condition that,



[ EFE, Chapter 3, §20, p. 50, Eq. (75) ] 
be constant. More specifically, let's consider the case (related to the socalled Ferrers potentials) in which the configuration's density distribution is given by the expression,







NOTE: In our accompanying discussion of compressible analogues of Riemann Stype ellipsoids, we have discovered that — at least in the context of infinitesimally thin, nonaxisymmetric disks — this heterogeneous density profile can be nicely paired with an analytically expressible stream function, at least for the case where the integer exponent is, n = 1. 
According to Theorem 13 of EFE — see his Chapter 3, §20 (p. 53) — the potential at any point inside a triaxial ellipsoid with this specific density distribution is given by the expression,



[ EFE, Chapter 3, §20, p. 53, Eq. (101) ] 
where, has the same definition as above, and,



For purposes of illustration, in what follows we will assume that, .
The Case Where n = 0
When , we have a uniformdensity configuration, and the "interior" potential will be given by the expression,












As a check, let's see if this scalar potential satisfies the differential form of the
Given that,



[ EFE, §21, Eq. (108) ] 
we find,



Q.E.D.
The Case Where n = 1
When , we have a specific heterogeneous density configuration, and the "interior" potential will be given by the expression,









The first definiteintegral expression inside the curly braces is, to within a leading factor of , identical to the entire expression for the normalized potential that was derived in the case where n = 0. That is, we can write,






Then, from §22, p. 56 of EFE, we see that,



[ EFE, Chapter 3, §22, p. 53, Eq. (125) ] 
Applying this result to each of the other three definite integrals gives us,












where,


and we have made use of the symmetry relation, . Again, as a check, let's see if this scalar potential satisfies the differential form of the
We find,












In addition to recognizing, as stated above, that , and making explicit use of the relation,



this last expression can be simplified to discover that,






This does indeed demonstrate that the derived gravitational potential is consistent with our selected mass distribution in the case where n = 1, namely,



Q.E.D.
See Also
 Our Speculation6 effort to develop a "Concentric Ellipsoidal (T6) Coordinate System."
 Challenges Constructing EllipsoidalLike Configurations
 Properties of Homogeneous Ellipsoids (1) — The Gravitational Potential (A_{i} Coefficients)
© 2014  2021 by Joel E. Tohline 