Difference between revisions of "User:Tohline/SSC/Structure/BonnorEbert"

From VistrailsWiki
Jump to navigation Jump to search
(Create initial file to discuss Bonnor-Ebert sphere and limiting mass; and introduce table of examples)
 
(Move example table into analytic section)
Line 9: Line 9:
[[User:Tohline/SSC/Structure/PolytropesEmbedded|Polytropes embedded in an external medium]]
[[User:Tohline/SSC/Structure/PolytropesEmbedded|Polytropes embedded in an external medium]]


 
==Summary of Analytic Results==
=Bonnor-Ebert Limiting Mass=
Here we will refer to the original works of [http://http://adsabs.harvard.edu/abs/1955ZA.....37..217E Ebert] (1955, ZA, 37, 217) and [http://http://adsabs.harvard.edu/abs/1956MNRAS.116..351B Bonnor] (1956, MNRAS, 116, 351) .
 
In his study of the "global gravitational stability [of] one-dimensional polytropes,"  [http://adsabs.harvard.edu/abs/1981MNRAS.195..967W Whitworth] (1981, MNRAS, 195, 967) normalizes (or "references") various derived mathematical expressions for configuration radii, <math>R</math>, and for the pressure exerted by an external bounding medium, <math>P_\mathrm{ex}</math>, to quantities he refers to as, respectively, <math>R_\mathrm{rf}</math> and <math>P_\mathrm{rf}</math>.  The paragraph from his paper in which these two reference quantities are defined is shown here:
<div align="center">
<table border="2">
<tr><td>
[[File:WhitworthScalingText.jpg|600px|center|Whitworth (1981, MNRAS, 195, 967)]]
</td></tr>
</table>
</div>
In order to map Whitworth's terminology to ours, we note, first, that he uses <math>M_0</math> to represent the spherical configuration's total mass, which we refer to simply as <math>M</math>; and his parameter <math>\eta</math> is related to our {{User:Tohline/Math/MP_PolytropicIndex}} via the relation,
<div align="center">
<math>\eta = 1 + \frac{1}{n} \, .</math>
</div>
Hence, Whitworth writes the polytropic equation of state as,
<div align="center">
<math>P = K_\eta \rho^\eta \, ,</math>
</div>
whereas, using our standard notation, this same key relation is written as,
<div align="center">
{{User:Tohline/Math/EQ_Polytrope01}} ;
</div>
and his parameter <math>K_\eta</math> is identical to our {{User:Tohline/Math/MP_PolytropicConstant}}. 
 
According to the second (bottom) expression identified by the red outlined box drawn above,
<div align="center">
<math>
P_\mathrm{rf} = \frac{3^4 5^3}{2^{10} \pi} \biggl( \frac{K_1^4}{G^3 M^2} \biggr) \, ,
</math>
</div>
and inverting the expression inside the green outlined box gives,
<div align="center">
<math>
K_1 = \biggl[ K_n (4 P_\mathrm{rf})^{\eta - 1} \biggr]^{1/\eta} \, .
</math>
</div>
Hence,
<div align="center">
<math>
P_\mathrm{rf} = \frac{3^4 5^3}{2^{10} \pi} \biggl( \frac{1}{G^3 M^2} \biggr)\biggl[ K_n (4 P_\mathrm{rf})^{\eta - 1} \biggr]^{4/\eta} \, ,
</math>
</div>
or, gathering all factors of <math>P_\mathrm{rf}</math> to the left-hand side,
<div align="center">
<math>
P_\mathrm{rf}^{(4-3\eta)} = 2^{-2(4+\eta)} \biggl( \frac{3^4 5^3}{\pi} \biggr)^\eta \biggl[ \frac{K_n^4}{G^{3\eta} M^{2\eta}} \biggr] \, .
</math>
</div>
Analogously, according to the first (top) expression identified inside the red outlined box,
<div align="center">
<math>
R_\mathrm{rf} = \frac{2^2 GM}{3\cdot 5 K_1} = 2^{2/\eta} \biggl( \frac{GM}{3\cdot 5}\biggr) K_n^{-1/\eta}  P_\mathrm{rf}^{(1-\eta)/\eta}
~~~~\Rightarrow~~~~ R_\mathrm{rf}^\eta = \frac{2^{2}}{K_n} \biggl( \frac{GM}{3\cdot 5}\biggr)^\eta P_\mathrm{rf}^{(1-\eta)} \, .
</math>
</div>


<div align="center">
<div align="center">
Line 230: Line 174:
</table>
</table>
</div>
</div>
=Bonnor-Ebert Limiting Mass=
Here we will refer to the original works of [http://http://adsabs.harvard.edu/abs/1955ZA.....37..217E Ebert] (1955, ZA, 37, 217) and [http://http://adsabs.harvard.edu/abs/1956MNRAS.116..351B Bonnor] (1956, MNRAS, 116, 351) .
In his study of the "global gravitational stability [of] one-dimensional polytropes,"  [http://adsabs.harvard.edu/abs/1981MNRAS.195..967W Whitworth] (1981, MNRAS, 195, 967) normalizes (or "references") various derived mathematical expressions for configuration radii, <math>R</math>, and for the pressure exerted by an external bounding medium, <math>P_\mathrm{ex}</math>, to quantities he refers to as, respectively, <math>R_\mathrm{rf}</math> and <math>P_\mathrm{rf}</math>.  The paragraph from his paper in which these two reference quantities are defined is shown here:
<div align="center">
<table border="2">
<tr><td>
[[File:WhitworthScalingText.jpg|600px|center|Whitworth (1981, MNRAS, 195, 967)]]
</td></tr>
</table>
</div>
In order to map Whitworth's terminology to ours, we note, first, that he uses <math>M_0</math> to represent the spherical configuration's total mass, which we refer to simply as <math>M</math>; and his parameter <math>\eta</math> is related to our {{User:Tohline/Math/MP_PolytropicIndex}} via the relation,
<div align="center">
<math>\eta = 1 + \frac{1}{n} \, .</math>
</div>
Hence, Whitworth writes the polytropic equation of state as,
<div align="center">
<math>P = K_\eta \rho^\eta \, ,</math>
</div>
whereas, using our standard notation, this same key relation is written as,
<div align="center">
{{User:Tohline/Math/EQ_Polytrope01}} ;
</div>
and his parameter <math>K_\eta</math> is identical to our {{User:Tohline/Math/MP_PolytropicConstant}}. 
According to the second (bottom) expression identified by the red outlined box drawn above,
<div align="center">
<math>
P_\mathrm{rf} = \frac{3^4 5^3}{2^{10} \pi} \biggl( \frac{K_1^4}{G^3 M^2} \biggr) \, ,
</math>
</div>
and inverting the expression inside the green outlined box gives,
<div align="center">
<math>
K_1 = \biggl[ K_n (4 P_\mathrm{rf})^{\eta - 1} \biggr]^{1/\eta} \, .
</math>
</div>
Hence,
<div align="center">
<math>
P_\mathrm{rf} = \frac{3^4 5^3}{2^{10} \pi} \biggl( \frac{1}{G^3 M^2} \biggr)\biggl[ K_n (4 P_\mathrm{rf})^{\eta - 1} \biggr]^{4/\eta} \, ,
</math>
</div>
or, gathering all factors of <math>P_\mathrm{rf}</math> to the left-hand side,
<div align="center">
<math>
P_\mathrm{rf}^{(4-3\eta)} = 2^{-2(4+\eta)} \biggl( \frac{3^4 5^3}{\pi} \biggr)^\eta \biggl[ \frac{K_n^4}{G^{3\eta} M^{2\eta}} \biggr] \, .
</math>
</div>
Analogously, according to the first (top) expression identified inside the red outlined box,
<div align="center">
<math>
R_\mathrm{rf} = \frac{2^2 GM}{3\cdot 5 K_1} = 2^{2/\eta} \biggl( \frac{GM}{3\cdot 5}\biggr) K_n^{-1/\eta}  P_\mathrm{rf}^{(1-\eta)/\eta}
~~~~\Rightarrow~~~~ R_\mathrm{rf}^\eta = \frac{2^{2}}{K_n} \biggl( \frac{GM}{3\cdot 5}\biggr)^\eta P_\mathrm{rf}^{(1-\eta)} \, .
</math>
</div>




=Related Wikipedia Discussions=
=Related Wikipedia Discussions=
* [http://en.wikipedia.org/wiki/Bonnor-Ebert)mass Bonnor-Ebert Mass]
* [http://en.wikipedia.org/wiki/Bonnor-Ebert)mass Bonnor-Ebert Mass]




{{LSU_HBook_footer}}
{{LSU_HBook_footer}}

Revision as of 16:10, 22 October 2012

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Mass Upper Limits

Virial Equilibrium

Virial equilibrium explained elsewhere

Polytropes Embedded in an External Medium

Polytropes embedded in an external medium

Summary of Analytic Results

Examples

<math>~n</math>

<math>\eta = 1+1/n</math>

<math>M_\mathrm{max}</math>

<math>P_\mathrm{max}</math>

<math>R_\mathrm{eq}</math>

<math>\alpha_\mathrm{virial}</math>

<math>\alpha_\mathrm{exact}</math>

<math>\mathrm{scale}</math>

<math>\alpha_\mathrm{virial}</math>

<math>\alpha_\mathrm{exact}</math>

<math>\mathrm{scale}</math>

<math>\alpha_\mathrm{virial}</math>

<math>\alpha_\mathrm{exact}</math>

<math>\mathrm{scale}</math>

1

2

<math>\frac{2^{6}\pi}{3^4 5^3} </math>

<math>\frac{2^{6}\pi}{3^4 5^3} </math>

<math>\biggl[ \frac{G^{3} M^{2} }{K^2}\biggr]</math>

<math>\frac{2^{6}\pi}{3^4 5^3} </math>

<math>\frac{2^{6}\pi}{3^4 5^3} </math>

<math>\frac{2^{6}\pi}{3^4 5^3} \biggl[ \frac{G^{3} M^{2} }{K^2}\biggr]</math>

<math>\frac{2^{6}\pi}{3^4 5^3} </math>

<math>\frac{2^{6}\pi}{3^4 5^3} </math>

<math>\biggl[ \frac{3^2 5}{2^4 \pi} \biggl( \frac{K}{G} \biggr) \biggr]^{1/2}</math>

5

6/5

<math>\frac{3^{12} 5^{9}}{2^{26} \pi^3} </math>

<math>\frac{2^{6}\pi}{3^4 5^3} </math>

<math>\biggl[ \frac{K^{10}}{G^9 M^6} \biggr]</math>

<math>\frac{3^{12} 5^{9}}{2^{26} \pi^3} </math>

<math>\frac{2^{6}\pi}{3^4 5^3} </math>

<math>\frac{3^{12} 5^{9}}{2^{26} \pi^3} \biggl[ \frac{K^{10}}{G^9 M^6} \biggr]</math>

<math>\frac{3^{12} 5^{9}}{2^{26} \pi^3} </math>

<math>\frac{2^{6}\pi}{3^4 5^3} </math>

<math>\biggl[ \frac{2^{12} \pi}{3^6 5^5} \biggl( \frac{G^5 M^4}{K^5} \biggr) \biggr]^{1/2}</math>

<math>\infty</math>

1

<math> \frac{3^4 5^3}{2^{10}\pi} </math>

<math>\frac{2^{6}\pi}{3^4 5^3} </math>

<math> \biggl[ \frac{K^4}{G^{3} M^{2} }\biggr]</math>

<math>\frac{3^{12} 5^{9}}{2^{26} \pi^3} </math>

<math>\frac{2^{6}\pi}{3^4 5^3} </math>

<math> \frac{3^4 5^3}{2^{10}\pi} \biggl[ \frac{K^4}{G^{3} M^{2} }\biggr]</math>

<math>\frac{3^{12} 5^{9}}{2^{26} \pi^3} </math>

<math>\frac{2^{6}\pi}{3^4 5^3} </math>

<math>\frac{2^2GM}{3\cdot 5 K}</math>


Bonnor-Ebert Limiting Mass

Here we will refer to the original works of Ebert (1955, ZA, 37, 217) and Bonnor (1956, MNRAS, 116, 351) .

In his study of the "global gravitational stability [of] one-dimensional polytropes," Whitworth (1981, MNRAS, 195, 967) normalizes (or "references") various derived mathematical expressions for configuration radii, <math>R</math>, and for the pressure exerted by an external bounding medium, <math>P_\mathrm{ex}</math>, to quantities he refers to as, respectively, <math>R_\mathrm{rf}</math> and <math>P_\mathrm{rf}</math>. The paragraph from his paper in which these two reference quantities are defined is shown here:

Whitworth (1981, MNRAS, 195, 967)

In order to map Whitworth's terminology to ours, we note, first, that he uses <math>M_0</math> to represent the spherical configuration's total mass, which we refer to simply as <math>M</math>; and his parameter <math>\eta</math> is related to our <math>~n</math> via the relation,

<math>\eta = 1 + \frac{1}{n} \, .</math>

Hence, Whitworth writes the polytropic equation of state as,

<math>P = K_\eta \rho^\eta \, ,</math>

whereas, using our standard notation, this same key relation is written as,

<math>~P = K_\mathrm{n} \rho^{1+1/n}</math> ;

and his parameter <math>K_\eta</math> is identical to our <math>~K_\mathrm{n}</math>.

According to the second (bottom) expression identified by the red outlined box drawn above,

<math> P_\mathrm{rf} = \frac{3^4 5^3}{2^{10} \pi} \biggl( \frac{K_1^4}{G^3 M^2} \biggr) \, , </math>

and inverting the expression inside the green outlined box gives,

<math> K_1 = \biggl[ K_n (4 P_\mathrm{rf})^{\eta - 1} \biggr]^{1/\eta} \, . </math>

Hence,

<math> P_\mathrm{rf} = \frac{3^4 5^3}{2^{10} \pi} \biggl( \frac{1}{G^3 M^2} \biggr)\biggl[ K_n (4 P_\mathrm{rf})^{\eta - 1} \biggr]^{4/\eta} \, , </math>

or, gathering all factors of <math>P_\mathrm{rf}</math> to the left-hand side,

<math> P_\mathrm{rf}^{(4-3\eta)} = 2^{-2(4+\eta)} \biggl( \frac{3^4 5^3}{\pi} \biggr)^\eta \biggl[ \frac{K_n^4}{G^{3\eta} M^{2\eta}} \biggr] \, . </math>

Analogously, according to the first (top) expression identified inside the red outlined box,

<math> R_\mathrm{rf} = \frac{2^2 GM}{3\cdot 5 K_1} = 2^{2/\eta} \biggl( \frac{GM}{3\cdot 5}\biggr) K_n^{-1/\eta} P_\mathrm{rf}^{(1-\eta)/\eta} ~~~~\Rightarrow~~~~ R_\mathrm{rf}^\eta = \frac{2^{2}}{K_n} \biggl( \frac{GM}{3\cdot 5}\biggr)^\eta P_\mathrm{rf}^{(1-\eta)} \, . </math>


Related Wikipedia Discussions


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation