Difference between revisions of "User:Tohline/SSC/Stability BoundedCompositePolytropes"

From VistrailsWiki
Jump to navigation Jump to search
(Begin new section titled "Instabilities in Bounded and Composite Polytropes")
 
(→‎Instabilities in Bounded and Composite Polytropes: Begin typing text for unbounded structures)
Line 5: Line 5:
{{LSU_HBook_header}}
{{LSU_HBook_header}}


== General Properties==
==Unbounded, Complete Polytropes==
===Horedt's Presentation===
===Free-Energy Function and Its Derivatives===


The free-energy function that is relevant to a discussion of the structure and stability of unbounded configurations having polytropic index, <math>~n</math>,  has the form,
<div align="center">
<table border="0" cellpadding="5">
<tr>
  <td align="right">
<math>~\mathcal{G}(x)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>
-ax^{-1} +b x^{-3/n} + \mathcal{G}_0
\, ,
</math>
  </td>
</tr>


</table>
</div>
where <math>~x \equiv R/R_\mathrm{SWS}</math> identifies the radius of the configuration and <math>\mathcal{G}_0</math> is an arbitrary constant.  If the coefficients, <math>~a, b</math>, and <math>~c</math>, are held constant while varying the configuration's size, we see that,
<div align="center">
<table border="0" cellpadding="5">
<tr>
  <td align="right">
<math>~\frac{d\mathcal{G}}{dx}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>
x^{-2} \biggl[ a - \frac{3b}{n}\cdot x^{(n-3)/n} \biggr]
\, ,
</math>
  </td>
</tr>


</table>
</div>
and,
<div align="center">
<table border="0" cellpadding="5">
<tr>
  <td align="right">
<math>~\frac{d^2\mathcal{G}}{dx^2}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>
x^{-3} \biggl[ -2a + \frac{3(3+n)b}{n^2}\cdot x^{(n-3)/n} \biggr]
\, .
</math>
  </td>
</tr>
</table>
</div>
In terms of the system's mass and its [[User:Tohline/SSC/Virial/PolytropesEmbedded/SecondEffortAgain#Structural_Form_Factors|structural form factors]], <math>~\mathfrak{f}_M</math>, <math>~\mathfrak{f}_A</math>, and <math>~\mathfrak{f}_W</math>, the two relevant coefficients are,
<div align="center">
<table border="0" cellpadding="5">
<tr>
  <td align="right">
<math>~a</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{3}{5}\biggl(\frac{n+1}{n}\biggr) \biggl[ \biggl( \frac{M}{M_\mathrm{SWS}}\biggr) \cdot \frac{1}{\mathfrak{f}_M} \biggr]^2
\mathfrak{f}_W  \, ,</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~b</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~n \biggl( \frac{3}{4\pi}\biggr)^{1/n} \biggl[ \biggl( \frac{M}{M_\mathrm{SWS}}\biggr) \cdot \frac{1}{\mathfrak{f}_M} \biggr]^{(n+1)/n}
\mathfrak{f}_A \, .
</math>
  </td>
</tr>
</table>
</div>
===Equilibrium Radius===
A configuration's equilibrium radius, <math>~x_\mathrm{eq}</math>, can be determined one of two ways:
====Extrema in the Free Energy====
Equilibria are identified by extrema in the free-energy function.  Setting <math>d\mathcal{G}/dx = 0</math>, we find,
<div align="center">
<table border="0" cellpadding="5">
<tr>
  <td align="right">
<math>~x_\mathrm{eq}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>
\biggl(\frac{an}{3b} \biggr)^{n/(n-3)}
\, ,
</math>
  </td>
</tr>
</table>
</div>


=Related Discussions=
=Related Discussions=

Revision as of 01:05, 24 March 2015

Instabilities in Bounded and Composite Polytropes

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Unbounded, Complete Polytropes

Free-Energy Function and Its Derivatives

The free-energy function that is relevant to a discussion of the structure and stability of unbounded configurations having polytropic index, <math>~n</math>, has the form,

<math>~\mathcal{G}(x)</math>

<math>~=</math>

<math> -ax^{-1} +b x^{-3/n} + \mathcal{G}_0 \, , </math>

where <math>~x \equiv R/R_\mathrm{SWS}</math> identifies the radius of the configuration and <math>\mathcal{G}_0</math> is an arbitrary constant. If the coefficients, <math>~a, b</math>, and <math>~c</math>, are held constant while varying the configuration's size, we see that,

<math>~\frac{d\mathcal{G}}{dx}</math>

<math>~=</math>

<math> x^{-2} \biggl[ a - \frac{3b}{n}\cdot x^{(n-3)/n} \biggr] \, , </math>

and,

<math>~\frac{d^2\mathcal{G}}{dx^2}</math>

<math>~=</math>

<math> x^{-3} \biggl[ -2a + \frac{3(3+n)b}{n^2}\cdot x^{(n-3)/n} \biggr] \, . </math>

In terms of the system's mass and its structural form factors, <math>~\mathfrak{f}_M</math>, <math>~\mathfrak{f}_A</math>, and <math>~\mathfrak{f}_W</math>, the two relevant coefficients are,

<math>~a</math>

<math>~=</math>

<math>~\frac{3}{5}\biggl(\frac{n+1}{n}\biggr) \biggl[ \biggl( \frac{M}{M_\mathrm{SWS}}\biggr) \cdot \frac{1}{\mathfrak{f}_M} \biggr]^2 \mathfrak{f}_W \, ,</math>

<math>~b</math>

<math>~=</math>

<math>~n \biggl( \frac{3}{4\pi}\biggr)^{1/n} \biggl[ \biggl( \frac{M}{M_\mathrm{SWS}}\biggr) \cdot \frac{1}{\mathfrak{f}_M} \biggr]^{(n+1)/n} \mathfrak{f}_A \, . </math>

Equilibrium Radius

A configuration's equilibrium radius, <math>~x_\mathrm{eq}</math>, can be determined one of two ways:

Extrema in the Free Energy

Equilibria are identified by extrema in the free-energy function. Setting <math>d\mathcal{G}/dx = 0</math>, we find,

<math>~x_\mathrm{eq}</math>

<math>~=</math>

<math> \biggl(\frac{an}{3b} \biggr)^{n/(n-3)} \, , </math>

Related Discussions

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation