Difference between revisions of "User:Tohline/SSC/Stability/Isothermal"

From VistrailsWiki
Jump to navigation Jump to search
Line 122: Line 122:


===Linearized Wave Equation===
===Linearized Wave Equation===
The linearized wave equation that [http://adsabs.harvard.edu/abs/1968MNRAS.140..109Y Yabushita (1968)] used to examine the radial pulsation modes of pressure-truncated isothermal spheres is displayed in the following, boxed-in image:


 
<div align="center" id="Yabushita68">
<div align="center" id="NewTohline97">
<table border="1" cellpadding="5" width="80%">
<table border="1" cellpadding="5" width="80%">
<tr><td align="center">
<tr><td align="center">
Equations extracted from [http://adsabs.harvard.edu/abs/1968MNRAS.140..109Y S. Yabushita (1968, MNRAS, 140, 109)]<p></p>
Equation extracted from [http://adsabs.harvard.edu/abs/1968MNRAS.140..109Y S. Yabushita (1968, MNRAS, 140, 109)]<p></p>
"''Jeans's Type Gravitational Instability of Finite Isothermal Gas Spheres''"<p></p>
"''Jeans's Type Gravitational Instability of Finite Isothermal Gas Spheres''"<p></p>
MNRAS, vol. 140, pp. 109-120 &copy; Royal Astronomical Society
MNRAS, vol. 140, pp. 109-120 &copy; Royal Astronomical Society
Line 133: Line 133:
<tr>
<tr>
   <td align="left">
   <td align="left">
[[File:Yabushita68WaveEq.png|600px|center|Yabushita (1968)]]
[[File:Yabushita68WaveEq.png|500px|center|Yabushita (1968)]]
   </td>
   </td>
</tr>
</tr>
Line 139: Line 139:
</div>
</div>


The linearized wave equation that Yabushita used to examine the radial pulsation modes of pressure-truncated isothermal spheres, as displayed in the above, boxed-in image, can be obtained straightforwardly through a strategic combination of three of the following four linearized principal governing equations that we have derived in an [[User:Tohline/SSC/Stability_Eulerian_Perspective#Summary_and_Combinations|accompanying discussion]], namely,
This equation can be obtained straightforwardly through a strategic combination of three of the following four linearized principal governing equations that we have derived in our [[User:Tohline/SSC/Stability_Eulerian_Perspective#Summary_and_Combinations|accompanying, broad introductory discussion]] of linear stability analyses, namely,


<div align="center">
<div align="center">
Line 240: Line 240:
</table>
</table>
</div>
</div>
Rearranging terms, and using the replacement relation, <math>~\nabla P_0 = - \rho_0\nabla\Phi_0</math>, gives,
Rearranging terms, and using the replacement ''equilibrium'' relation, <math>~\nabla P_0 = - \rho_0\nabla\Phi_0</math>, gives,


<div align="center">
<div align="center">
Line 313: Line 313:
</table>
</table>
</div>
</div>
Q.E.D.
This is identical to [http://adsabs.harvard.edu/abs/1968MNRAS.140..109Y Yabushita's (1968)] equation (2.12).
 
 
<!--
In an [[User:Tohline/SSC/Stability_Eulerian_Perspective#EulerianWaveEquation|accompanying discussion]], we derived the so-called,
<div align="center" id="EulerianWaveEquation">
<table border="1" cellpadding="8">
<tr><td align="center">
<table border="0" cellpadding="1" align="center">
<tr>
  <td align="center" colspan="3">
<font color="#770000">'''Wave Equation for Self-Gravitating Fluids'''</font>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\frac{\partial^2 s }{\partial t^2}  +  \frac{\nabla\rho_0}{\rho_0} \cdot \frac{\partial \vec{v}}{\partial t}
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>4\pi G \rho_0 s + \nabla^2\biggl[s \biggl( \frac{dP}{d\rho} \biggr)_0 \biggr] </math>
  </td>
</tr>
</table>
</td></tr>
</table>
</div>
that describes the time-variation at any point in space of the ''fractional'' density fluctuation,
<div align="center">
<math>s \equiv \frac{\rho_1}{\rho_0} \, .</math>
</div>
Multiplying this differential equation through by <math>~\rho_0</math>, and making two substitutions from our [[User:Tohline/SSC/Stability_Eulerian_Perspective#Summary_and_Combinations|accompanying summary of the separately linearized principal governing equations]] &#8212; namely,
<div align="center">
<math>
~\frac{\partial \vec{v}}{\partial t}  = - \nabla\Phi_1 - \frac{1}{\rho_0} \nabla P_1 + \frac{\rho_1}{\rho_0^2} \nabla P_0  \, ,
</math>
</div>
and,
<div align="center">
<math>
P_1 = \biggl( \frac{dP}{d\rho} \biggr)_0 \rho_1 ~~~ \Rightarrow ~~~ s \biggl( \frac{dP}{d\rho} \biggr)_0  = \frac{P_1}{\rho_0} \, ,
</math>
</div>
 
&#8212; gives,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\frac{\partial^2 \rho_1 }{\partial t^2}  +  \nabla\rho_0 \cdot \biggl[ - \nabla\Phi_1 - \frac{1}{\rho_0} \nabla P_1 + \frac{\rho_1}{\rho_0^2} \nabla P_0\biggr]
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>4\pi G \rho_0 \rho_1 + \rho_0\nabla^2\biggl[\frac{P_1}{\rho_0} \biggr] </math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\Rightarrow ~~~ \frac{\partial^2 \rho_1 }{\partial t^2}  +  \nabla\rho_0 \cdot \biggl[ - \nabla\Phi_1
- \frac{1}{\rho_0} \nabla P_1 - \frac{\rho_1}{\rho_0} \nabla \Phi_0\biggr]
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>4\pi G \rho_0 \rho_1 + \nabla^2 P_1 + P_1 \rho_0\nabla^2\biggl[\frac{1}{\rho_0} \biggr] </math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\Rightarrow ~~~ \frac{\partial^2 \rho_1 }{\partial t^2} - \nabla^2 P_1 -  4\pi G \rho_0 \rho_1 -  \nabla\rho_0 \cdot  \nabla\Phi_1
- \nabla \Phi_0 \cdot \nabla\rho_1
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math> \nabla\rho_0 \cdot \biggl[ \frac{1}{\rho_0} \nabla P_1\biggr] + P_1 \rho_0\nabla^2\biggl[\frac{1}{\rho_0} \biggr]
+ \nabla \Phi_0 \cdot \biggl[ \frac{\rho_1}{\rho_0} \nabla\rho_0 -\nabla\rho_1 \biggr]
</math>
  </td>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math> -\rho_0 \nabla\biggl(\frac{1}{\rho_0}\biggr) \cdot \nabla P_1 + P_1 \rho_0\nabla^2\biggl[\frac{1}{\rho_0} \biggr]
- \rho_0\nabla \Phi_0 \cdot \biggl[ \rho_1 \nabla\biggl(\frac{1}{\rho_0}\biggr)  + \biggl(\frac{1}{\rho_0}\biggr)\nabla\rho_1 \biggr]
</math>
  </td>
</tr>
</table>
</div>
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math> \rho_0 \biggl[ P_1 \nabla^2\biggl(\frac{1}{\rho_0} \biggr)  - \nabla\biggl(\frac{1}{\rho_0}\biggr)  \cdot \nabla P_1 \biggr]
+ \nabla P_0 \cdot \nabla\biggl(\frac{\rho_1}{\rho_0}\biggr) 
</math>
  </td>
</tr>
</table>
</div>
-->


===Alternative Expression===
===Alternative Expression===

Revision as of 19:54, 9 November 2016

Radial Oscillations of Pressure-Truncated Isothermal Spheres

Here we draw primarily from the following three sources:

See also:


Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Groundwork

Equilibrium Model

In an accompanying discussion, while reviewing the original derivations of Ebert (1955) and Bonnor (1956), we have detailed the equilibrium properties of pressure-truncated isothermal spheres. A parallel presentation of these details can be found in §2 — specifically, equations (2.4) through (2.10) — of Yabushita (1968). Each of Yabushita's key mathematical expressions can be mapped to ours via the variable substitutions presented here in Table 1.

Table 1:  Mapping from Yabushita's (1968) Notation to Ours

Yabushita's (1968) Notation: <math>~x</math> <math>~\psi</math> <math>~\mu</math> <math>~M</math> <math>~x_0</math> <math>~p_0</math>
Our Notation: <math>~\xi</math> <math>~-\psi</math> <math>~\bar\mu</math> <math>~M_{\xi_e}</math> <math>~\xi_e</math> <math>~P_e</math>

For example, given the system's sound speed, <math>~c_s</math>, and total mass, <math>~M_{\xi_e}</math>, the expression from our presentation that shows how the bounding external pressure, <math>~P_e</math>, depends on the dimensionless Lane-Emden function, <math>~\psi</math>, is,

<math>~P_e</math>

<math>~=</math>

<math>~\biggl( \frac{c_s^8}{4\pi G^3 M_{\xi_e}^2} \biggr) ~\xi_e^4 \biggl(\frac{d\psi}{d\xi}\biggr)^2_e e^{-\psi_e}</math>

<math>~\Rightarrow ~~~ \xi_e^2 \biggl(-\frac{d\psi}{d\xi}\biggr)_e e^{-(1/2)\psi_e}</math>

<math>~=</math>

<math>~\frac{1}{c_s^4}\biggl[ G^3 M_{\xi_e}^2 ~(4\pi P_e)\biggr]^{1 / 2} \, ,</math>

which — see the boxed-in excerpt that follows — exactly matches Yabushita's (1968) equation (2.9), after recalling that the system's sound speed is related to its temperature via the relation,

<math>c_s^2 = \frac{\Re T}{\bar{\mu}} \, .</math>

And, our expression for the truncated configuration's equilibrium radius is,

<math>~R</math>

<math>~=</math>

<math>~\frac{GM_{\xi_e}}{c_s^2} \biggl[ - \xi \biggl(\frac{d\psi}{d\xi}\biggr) \biggr]_e^{-1}</math>

which — see the boxed-in excerpt that follows — matches Yabushita's (1968) equation (2.10).


Equations extracted from S. Yabushita (1968, MNRAS, 140, 109)

"Jeans's Type Gravitational Instability of Finite Isothermal Gas Spheres"

MNRAS, vol. 140, pp. 109-120 © Royal Astronomical Society

Yabushita (1968)

Mathematical expressions displayed here with layout modified from the original publication.

Linearized Wave Equation

The linearized wave equation that Yabushita (1968) used to examine the radial pulsation modes of pressure-truncated isothermal spheres is displayed in the following, boxed-in image:

Equation extracted from S. Yabushita (1968, MNRAS, 140, 109)

"Jeans's Type Gravitational Instability of Finite Isothermal Gas Spheres"

MNRAS, vol. 140, pp. 109-120 © Royal Astronomical Society

Yabushita (1968)

This equation can be obtained straightforwardly through a strategic combination of three of the following four linearized principal governing equations that we have derived in our accompanying, broad introductory discussion of linear stability analyses, namely,

Linearized
Equation of Continuity
<math> \frac{\partial \rho_1}{\partial t} + \rho_0\nabla\cdot \vec{v} + \vec{v}\cdot \nabla\rho_0 = 0 , </math>

Linearized
Euler Equation
<math> ~\frac{\partial \vec{v}}{\partial t} = - \nabla\Phi_1 - \frac{1}{\rho_0} \nabla P_1 + \frac{\rho_1}{\rho_0^2} \nabla P_0 \, , </math>

Linearized
Adiabatic Form of the
First Law of Thermodynamics

<math> P_1 = \biggl( \frac{dP}{d\rho} \biggr)_0 \rho_1\, , </math>

Linearized
Poisson Equation

<math> \nabla^2 \Phi_1 = 4\pi G \rho_1\, . </math>

Taking the partial time-derivative of the linearized equation of continuity gives,

<math>~- \nabla\cdot \frac{\partial \vec{v}}{\partial t} </math>

<math>~=</math>

<math>~\frac{1}{\rho_0}\frac{\partial^2 \rho_1}{\partial t^2} + \frac{\nabla\rho_0}{\rho_0} \cdot \frac{\partial\vec{v}}{\partial t} \, ;</math>

and, taking the divergence of the linearized Euler equation gives,

<math>~-\nabla\cdot \frac{\partial \vec{v}}{\partial t} </math>

<math>~=</math>

<math>~\nabla^2 \Phi_1 + \nabla\cdot \biggl[\frac{1}{\rho_0} \nabla P_1\biggr] - \nabla \cdot \biggl[ \frac{\rho_1}{\rho_0^2} \nabla P_0 \biggr] \, .</math>

Combining the two, then making two substitutions using (1) the linearized Poisson equation and (2) the linearized Euler equation, we have,

<math>~\frac{\partial^2 \rho_1}{\partial t^2} + \nabla\rho_0 \cdot \frac{\partial\vec{v}}{\partial t} </math>

<math>~=</math>

<math>~\rho_0 \nabla^2 \Phi_1 + \rho_0 \nabla\cdot \biggl[\frac{1}{\rho_0} \nabla P_1\biggr] - \rho_0\nabla \cdot \biggl[ \frac{\rho_1}{\rho_0^2} \nabla P_0 \biggr] </math>

<math>~\Rightarrow ~~~ \frac{\partial^2 \rho_1}{\partial t^2} + \nabla\rho_0 \cdot \biggl[ - \nabla\Phi_1 - \frac{1}{\rho_0} \nabla P_1 + \frac{\rho_1}{\rho_0^2} \nabla P_0 \biggr] </math>

<math>~=</math>

<math>~4\pi G \rho_0 \rho_1 + \nabla^2 P_1 + \rho_0 \nabla P_1 \cdot \nabla \biggl(\frac{1}{\rho_0} \biggr) - \rho_0\nabla \cdot \biggl[ \frac{\rho_1}{\rho_0^2} \nabla P_0 \biggr] \, .</math>

Rearranging terms, and using the replacement equilibrium relation, <math>~\nabla P_0 = - \rho_0\nabla\Phi_0</math>, gives,

<math>~ \frac{\partial^2 \rho_1}{\partial t^2} - \nabla^2 P_1 - 4\pi G \rho_0 \rho_1 - \nabla\rho_0\cdot\nabla\Phi_1 </math>

<math>~=</math>

<math>~ \frac{\nabla\rho_0}{\rho_0} \cdot \biggl[ \nabla P_1 + \rho_1 \nabla \Phi_0 \biggr] + \rho_0 \nabla P_1 \cdot \nabla \biggl(\frac{1}{\rho_0} \biggr) + \rho_0\nabla \cdot \biggl[ \frac{\rho_1}{\rho_0} \nabla \Phi_0 \biggr] </math>

 

<math>~=</math>

<math>~ \frac{\nabla\rho_0}{\rho_0} \cdot \biggl[ \nabla P_1 \biggr] + \frac{\rho_1}{\rho_0} \biggl[ \nabla\rho_0\cdot \nabla \Phi_0 \biggr] - \frac{1}{\rho_0} \nabla P_1 \cdot \nabla \rho_0 + \rho_0 \nabla \Phi_0 \cdot \nabla \biggl[ \frac{\rho_1}{\rho_0} \biggr] + \rho_1\nabla^2 \Phi_0 </math>

 

<math>~=</math>

<math>~ \frac{\rho_1}{\rho_0} \biggl[ \nabla\rho_0\cdot \nabla \Phi_0 \biggr] - \frac{\rho_1}{\rho_0} \biggl[ \nabla \Phi_0 \cdot \nabla\rho_0\biggr] + \nabla \Phi_0 \cdot \nabla \rho_1 + 4\pi G \rho_0 \rho_1 </math>

<math>~\Rightarrow ~~~ \frac{\partial^2 \rho_1}{\partial t^2} - \nabla^2 P_1 - 8\pi G \rho_0 \rho_1 - \nabla\rho_0\cdot\nabla\Phi_1 - \nabla \Phi_0 \cdot \nabla \rho_1 </math>

<math>~=</math>

<math>~0 \, .</math>

This is identical to Yabushita's (1968) equation (2.12).

Alternative Expression

Adiabatic Wave (or Radial Pulsation) Equation

LSU Key.png

<math>~ \frac{d^2x}{dr_0^2} + \biggl[\frac{4}{r_0} - \biggl(\frac{g_0 \rho_0}{P_0}\biggr) \biggr] \frac{dx}{dr_0} + \biggl(\frac{\rho_0}{\gamma_\mathrm{g} P_0} \biggr)\biggl[\omega^2 + (4 - 3\gamma_\mathrm{g})\frac{g_0}{r_0} \biggr] x = 0 </math>


whose solution gives eigenfunctions that describe various radial modes of oscillation in spherically symmetric, self-gravitating fluid configurations.

See Also


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation