Difference between revisions of "User:Tohline/SSC/FreeEnergy/PowerPoint"

From VistrailsWiki
Jump to navigation Jump to search
(→‎Case M: Finished expression for x_crit)
(→‎Case M: Finished (re)deriving x)
Line 228: Line 228:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\biggl(\frac{3}{4\pi} \biggr)^{(n+1)/n} \biggl( \frac{P_e}{P_\mathrm{norm}} \biggr)^{-1} \, ,</math>
<math>~\biggl(\frac{3}{4\pi} \biggr)^{(n+1)/n} \biggl( \frac{P_e}{P_\mathrm{norm}} \biggr)^{-1} \, .</math>
   </td>
   </td>
</tr>
</tr>
Line 234: Line 234:
</div>
</div>


so the statement of virial equilibrium becomes,
=====Virial Equilibrium=====
So the statement of virial equilibrium becomes,
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
Line 293: Line 294:
</div>
</div>


=====Dynamical Instability=====
And, along the equilibrium ''sequence'' that is generated by this virial expression, the transition from stable to unstable configurations occurs at,
And, along the equilibrium ''sequence'' that is generated by this virial expression, the transition from stable to unstable configurations occurs at,
<div align="center">
<div align="center">
Line 354: Line 356:
<math>~\biggl[
<math>~\biggl[
\frac{4n}{3\cdot 5(n+1)} \biggl(\frac{4\pi}{3} \biggr)^{1/n}\biggr]^{n/(n-3)} \, .
\frac{4n}{3\cdot 5(n+1)} \biggl(\frac{4\pi}{3} \biggr)^{1/n}\biggr]^{n/(n-3)} \, .
</math>
  </td>
</tr>
</table>
</div>
=====Turning Point=====
Let's examine the curvature of the equilibrium sequence.
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~ \frac{d}{dx}\biggl( \frac{P_e}{P_\mathrm{norm}} \biggr)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- \frac{3}{ 5\pi x^{5} }\biggl[ 5\biggl(\frac{3}{4\pi} \biggr)^{1/n} x^{(n-3)/n } -  1\biggr]
+
\frac{3(n-3)}{2^2n \pi x^{4} }\biggl(\frac{3}{4\pi} \biggr)^{1/n} x^{-3/n }
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{3}{ 5\pi x^{5} }
+ \frac{3}{4\pi}\biggl(\frac{3}{4\pi} \biggr)^{1/n} \biggl[ \frac{(n-3)}{n } - 4\biggr] x^{(3-4n)/n } 
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{3}{ 5\pi x^{5} }
- 3\biggl(\frac{3}{4\pi} \biggr)^{(n+1)/n} \biggl[ \frac{n+1}{n } \biggr] x^{(3-4n)/n }  \, .
</math>
  </td>
</tr>
</table>
</div>
Setting this derivative to zero let's us identify the location of the ''turning point'' that identifies <math>~P_\mathrm{max}.</math>
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~
[ x_\mathrm{eq}^{(3-n)/n }  ]_\mathrm{turn}
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{1}{ 5\pi }\biggl[ \frac{n }{n+1} \biggr] \biggl(\frac{4\pi}{3} \biggr)^{(n+1)/n}
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\Rightarrow~~~
[ x_\mathrm{eq} ]_\mathrm{turn}
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl[ \frac{4n}{ 15(n+1)}\biggl(\frac{4\pi}{3} \biggr)^{1/n} \biggr]^{n/(3-n)}
</math>
</math>
   </td>
   </td>

Revision as of 19:18, 19 August 2016


Supporting Derivations for Free-Energy PowerPoint Presentation

The derivations presented here are an extension of our accompanying free-energy synopsis. These additional details proved to be helpful while developing an overarching PowerPoint presentation.

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

General Free-Energy Expression

We're considering a free-energy function of the following form:

<math>~\mathfrak{G}^*_\mathrm{type}</math>

<math>~=</math>

<math>~-ax^{-1} + b x^{-3/n} + c x^{-3/j} + \mathfrak{G}_0 \, ,</math>

where,

<math>~x \equiv \frac{R}{R_0} \, .</math>

As we have shown, setting,

<math>~\frac{\partial \mathfrak{G}^*_\mathrm{type}}{\partial x}</math>

<math>~=</math>

<math>~0 \, ,</math>

generates a mathematical statement of virial equilibrium, namely,

<math>~\frac{ b}{nc}\cdot x^{(n-3)/n }_\mathrm{eq} - \frac{a}{3c} + \frac{1}{j}\cdot x^{(j-3)/j}_\mathrm{eq} </math>

<math>~=</math>

<math>~ 0 \, .</math>

And equilibrium configurations for which the second (as well as first) derivative of the free energy is zero are found at "critical" radii given by the expression,

<math>~[x_\mathrm{eq}^{(j-3)/j}]_\mathrm{crit} </math>

<math>~=</math>

<math>~ \frac{a}{3^2c}\biggl[ \frac{j^2(n-3)}{n-j} \biggr] \, . </math>

Pressure-Truncated Polytropes

For pressure-truncated polytropes, set <math>~j=-1</math> and let <math>~n</math> be the chosen polytropic index. In this case, the statement of virial equilibrium is,

<math>~\frac{ b}{nc}\cdot x^{(n-3)/n }_\mathrm{eq} - \frac{a}{3c} - x^{4}_\mathrm{eq} </math>

<math>~=</math>

<math>~ 0 \, ;</math>

and the critical equilibrium configuration has,

<math>~[x_\mathrm{eq}]_\mathrm{crit} </math>

<math>~=</math>

<math>~ \biggl[ \frac{a(n-3)}{3^2c (n+1)}\biggr]^{1/4} \, . </math>

Case M

Set <math>~K</math> and <math>~M_\mathrm{tot}</math> constant and examine how the free-energy behaves as a function of the coordinates, <math>~(R,P_e)</math>. In this case (see, for example, here),

<math>~a</math>

<math>~\equiv</math>

<math>~\frac{3}{5} \cdot \frac{\tilde{\mathfrak{f}}_W}{\tilde{\mathfrak{f}}_M^2}\, , </math>

<math>~b</math>

<math>~\equiv</math>

<math>~n\biggl(\frac{4\pi}{3} \biggr)^{-1/n} \frac{\tilde{\mathfrak{f}}_A}{\tilde{\mathfrak{f}}_M^{(n+1)/n}} \, , </math>

<math>~c</math>

<math>~\equiv</math>

<math>~\frac{4\pi}{3}\biggl( \frac{P_e}{P_\mathrm{norm}} \biggr) \, , </math>

where the structural form factors for pressure-truncated polytropes are precisely defined here. And (see, for example, here),

<math>~R_0 = R_\mathrm{norm}</math>

<math>~\equiv</math>

<math>~\biggl[ \biggl( \frac{G}{K} \biggr)^n M_\mathrm{tot}^{n-1} \biggr]^{1/(n-3)} \, ,</math>

<math>~P_\mathrm{norm}</math>

<math>~\equiv</math>

<math>~\biggl[ \frac{K^{4n}}{G^{3(n+1)} M_\mathrm{tot}^{2(n+1)}} \biggr]^{1/(n-3)} \, .</math>

If we set all three structural form-factors to unity, we have,

<math>~\frac{a}{3c}</math>

<math>~=</math>

<math>~\frac{3}{2^2\cdot 5\pi}\biggl( \frac{P_e}{P_\mathrm{norm}} \biggr)^{-1} \, ,</math>

<math>~\frac{b}{nc}</math>

<math>~=</math>

<math>~\biggl(\frac{3}{4\pi} \biggr)^{(n+1)/n} \biggl( \frac{P_e}{P_\mathrm{norm}} \biggr)^{-1} \, .</math>

Virial Equilibrium

So the statement of virial equilibrium becomes,

<math>~ x^{4}_\mathrm{eq} </math>

<math>~=</math>

<math>~\biggl[ \biggl(\frac{3}{4\pi} \biggr)^{(n+1)/n} x^{(n-3)/n }_\mathrm{eq} - \frac{3}{2^2\cdot 5\pi}\biggr]\biggl( \frac{P_e}{P_\mathrm{norm}} \biggr)^{-1} </math>

 

<math>~=</math>

<math>~\frac{3}{2^2\cdot 5\pi}\biggl[ 5\biggl(\frac{3}{4\pi} \biggr)^{1/n} x^{(n-3)/n }_\mathrm{eq} - 1\biggr]\biggl( \frac{P_e}{P_\mathrm{norm}} \biggr)^{-1} </math>

<math>~ \Rightarrow ~~~ \frac{P_e}{P_\mathrm{norm}}</math>

<math>~=</math>

<math>~\frac{3}{2^2\cdot 5\pi x^{4}_\mathrm{eq} }\biggl[ 5\biggl(\frac{3}{4\pi} \biggr)^{1/n} x^{(n-3)/n }_\mathrm{eq} - 1\biggr] \, . </math>

Dynamical Instability

And, along the equilibrium sequence that is generated by this virial expression, the transition from stable to unstable configurations occurs at,

<math>~[x_\mathrm{eq}]^4_\mathrm{crit} </math>

<math>~=</math>

<math>~ \biggl[ \frac{(n-3)}{3(n+1)}\biggr] \frac{3}{2^2\cdot 5\pi}\biggl( \frac{P_e}{P_\mathrm{norm}} \biggr)^{-1} </math>

<math>~\Rightarrow ~~~ \frac{2^2\cdot 5\pi}{3}\biggl( \frac{P_e}{P_\mathrm{norm}} \biggr)[x_\mathrm{eq}]^4_\mathrm{crit} </math>

<math>~=</math>

<math>~ \biggl[ \frac{(n-3)}{3(n+1)}\biggr] </math>

which, in combination with the virial equilibrium condition gives,

<math>~5\biggl(\frac{3}{4\pi} \biggr)^{1/n} [x_\mathrm{eq}]^{(n-3)/n }_\mathrm{crit} -1</math>

<math>~=</math>

<math>~ \biggl[ \frac{(n-3)}{3(n+1)}\biggr] </math>

<math>~\Rightarrow~~~ [x_\mathrm{eq}]_\mathrm{crit} </math>

<math>~=</math>

<math>~\biggl[ \frac{4n}{3\cdot 5(n+1)} \biggl(\frac{4\pi}{3} \biggr)^{1/n}\biggr]^{n/(n-3)} \, . </math>

Turning Point

Let's examine the curvature of the equilibrium sequence.

<math>~ \frac{d}{dx}\biggl( \frac{P_e}{P_\mathrm{norm}} \biggr)</math>

<math>~=</math>

<math>~ - \frac{3}{ 5\pi x^{5} }\biggl[ 5\biggl(\frac{3}{4\pi} \biggr)^{1/n} x^{(n-3)/n } - 1\biggr] + \frac{3(n-3)}{2^2n \pi x^{4} }\biggl(\frac{3}{4\pi} \biggr)^{1/n} x^{-3/n } </math>

 

<math>~=</math>

<math>~\frac{3}{ 5\pi x^{5} } + \frac{3}{4\pi}\biggl(\frac{3}{4\pi} \biggr)^{1/n} \biggl[ \frac{(n-3)}{n } - 4\biggr] x^{(3-4n)/n } </math>

 

<math>~=</math>

<math>~\frac{3}{ 5\pi x^{5} } - 3\biggl(\frac{3}{4\pi} \biggr)^{(n+1)/n} \biggl[ \frac{n+1}{n } \biggr] x^{(3-4n)/n } \, . </math>

Setting this derivative to zero let's us identify the location of the turning point that identifies <math>~P_\mathrm{max}.</math>

<math>~ [ x_\mathrm{eq}^{(3-n)/n } ]_\mathrm{turn} </math>

<math>~=</math>

<math>~ \frac{1}{ 5\pi }\biggl[ \frac{n }{n+1} \biggr] \biggl(\frac{4\pi}{3} \biggr)^{(n+1)/n} </math>

<math>~\Rightarrow~~~ [ x_\mathrm{eq} ]_\mathrm{turn} </math>

<math>~=</math>

<math>~ \biggl[ \frac{4n}{ 15(n+1)}\biggl(\frac{4\pi}{3} \biggr)^{1/n} \biggr]^{n/(3-n)} </math>


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation