Difference between revisions of "User:Tohline/Apps/SMS"

From VistrailsWiki
Jump to navigation Jump to search
(Begin chapter)
 
(Begin developing explanation for BAC84 EOS relations)
Line 7: Line 7:


==Equation of State==
==Equation of State==
In discussing the equation of state that was used by BAC84, we will use the terminology that has already been adopted in our [[User:Tohline/SR#Equation_of_State|introductory discussion of ''supplemental relations'']].
Our discussion of the equation of state (EOS) that was used by BAC84 draws on the terminology that has already been adopted in our [[User:Tohline/SR#Equation_of_State|introductory discussion of ''supplemental relations'']] and closely parallels [[User:Tohline/SSC/Structure/BiPolytropes/Analytic1.5_3#Envelope|our review of the properties of the envelope]] that [http://adsabs.harvard.edu/abs/1930MNRAS..91....4M E. A. Milne (1930, MNRAS, 91, 4)] used to construct a bipolytropic sphere.


Ignoring the component due to a degenerate electron gas, <math>~P_\mathrm{deg}</math>, the total gas pressure can be expressed as the sum of two separate components:  a component of ideal gas pressure, and a component of radiation pressure.  That is, in BAC84 the total pressure is given by the expression,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~P</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~P_\mathrm{gas} + P_\mathrm{rad} \, ,</math>
  </td>
</tr>
</table>
</div>
where,
<table width="60%" align="center" border=1 cellpadding=5>
<tr>
<td align="center" width="50%"><font color="darkblue">Ideal Gas</font></td>
<td align="center"><font color="darkblue">Radiation</font></td>
</tr>
<tr>
<td align="center">
{{User:Tohline/Math/EQ_EOSideal0A}}
</td>
<td align="center">
{{User:Tohline/Math/EQ_EOSradiation01}}
</td>
</tr>
</table>
Now, BAC84 define the rest-mass density in terms of the mean baryon mass, <math>~m_B</math>, via the expression, <math>~\rho = m_B n</math>, and write (see their equation 1),
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~P</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~Y_T n k T + \frac{1}{3}a_\mathrm{rad} T^4 \, .</math>
  </td>
</tr>
</table>
</div>
In converting from our notation to theirs we conclude, therefore, that,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\frac{\Re}{\bar{\mu}} (m_B n) T</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~Y_T n k T </math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\Rightarrow ~~~~ Y_T </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{\Re}{k} \cdot \frac{m_B}{\bar{\mu}}  \, .</math>
  </td>
</tr>
</table>
</div>
Following [http://adsabs.harvard.edu/abs/1930MNRAS..91....4M Milne (1930)], we have defined the parameter, <math>~\beta</math>, as the ratio of gas pressure to total pressure.  That is, in the context of BAC84, we have,
<div align="center">
<math>\beta \equiv \frac{P_\mathrm{gas} }{P}  \, ,</math>
</div>
in which case, also,
<div align="center">
<math>\frac{P_\mathrm{rad}}{P}  = 1-\beta </math>
&nbsp; &nbsp; &nbsp; &nbsp; and &nbsp; &nbsp; &nbsp; &nbsp;
<math>\frac{P_\mathrm{gas}}{P_\mathrm{rad}}  = \frac{\beta}{1-\beta} \, .</math>
</div>
Using a different notation, BAC84 (see their equation 5) define <math>~\sigma</math> as the ratio of the radiation pressure to the gas pressure.  Therefore, in converting from our notation to theirs we have,
<div align="center">
<math>\sigma = \frac{1-\beta}{\beta} ~~~~\Rightarrow ~~~~ \beta = (1 + \sigma)^{-1} \, , </math>
</div>
as well as,
<div align="center">
<math>\sigma = \frac{P_\mathrm{rad}}{P_\mathrm{gas}}
= \frac{a_\mathrm{rad} T^3}{3} \cdot \frac{\bar\mu}{(\Re m_B)n}
= \frac{a_\mathrm{rad} T^3}{3Y+T n k} \, ,</math>
</div>
which is precisely the definition provided in equation (5) of BAC84.




{{LSU_HBook_footer}}
{{LSU_HBook_footer}}

Revision as of 22:41, 17 December 2015

Rotating, Supermassive Stars

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |


Here we draw upon the work of J. R. Bond, W. D. Arnett, & B. J. Carr (1984, ApJ, 380, 825; hereafter BAC84) who were among the first to seriously address the question of the fate of very massive (stellar) objects.

Equation of State

Our discussion of the equation of state (EOS) that was used by BAC84 draws on the terminology that has already been adopted in our introductory discussion of supplemental relations and closely parallels our review of the properties of the envelope that E. A. Milne (1930, MNRAS, 91, 4) used to construct a bipolytropic sphere.

Ignoring the component due to a degenerate electron gas, <math>~P_\mathrm{deg}</math>, the total gas pressure can be expressed as the sum of two separate components: a component of ideal gas pressure, and a component of radiation pressure. That is, in BAC84 the total pressure is given by the expression,

<math>~P</math>

<math>~=</math>

<math>~P_\mathrm{gas} + P_\mathrm{rad} \, ,</math>

where,

Ideal Gas Radiation

LSU Key.png

<math>~P_\mathrm{gas} = \frac{\Re}{\bar{\mu}} \rho T</math>

LSU Key.png

<math>~P_\mathrm{rad} = \frac{1}{3} a_\mathrm{rad} T^4</math>

Now, BAC84 define the rest-mass density in terms of the mean baryon mass, <math>~m_B</math>, via the expression, <math>~\rho = m_B n</math>, and write (see their equation 1),

<math>~P</math>

<math>~=</math>

<math>~Y_T n k T + \frac{1}{3}a_\mathrm{rad} T^4 \, .</math>

In converting from our notation to theirs we conclude, therefore, that,

<math>~\frac{\Re}{\bar{\mu}} (m_B n) T</math>

<math>~=</math>

<math>~Y_T n k T </math>

<math>~\Rightarrow ~~~~ Y_T </math>

<math>~=</math>

<math>~\frac{\Re}{k} \cdot \frac{m_B}{\bar{\mu}} \, .</math>

Following Milne (1930), we have defined the parameter, <math>~\beta</math>, as the ratio of gas pressure to total pressure. That is, in the context of BAC84, we have,

<math>\beta \equiv \frac{P_\mathrm{gas} }{P} \, ,</math>

in which case, also,

<math>\frac{P_\mathrm{rad}}{P} = 1-\beta </math>         and         <math>\frac{P_\mathrm{gas}}{P_\mathrm{rad}} = \frac{\beta}{1-\beta} \, .</math>

Using a different notation, BAC84 (see their equation 5) define <math>~\sigma</math> as the ratio of the radiation pressure to the gas pressure. Therefore, in converting from our notation to theirs we have,

<math>\sigma = \frac{1-\beta}{\beta} ~~~~\Rightarrow ~~~~ \beta = (1 + \sigma)^{-1} \, , </math>

as well as,

<math>\sigma = \frac{P_\mathrm{rad}}{P_\mathrm{gas}} = \frac{a_\mathrm{rad} T^3}{3} \cdot \frac{\bar\mu}{(\Re m_B)n} = \frac{a_\mathrm{rad} T^3}{3Y+T n k} \, ,</math>

which is precisely the definition provided in equation (5) of BAC84.


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation