Difference between revisions of "User:Tohline/Apps/HomologousCollapse"

From VistrailsWiki
Jump to navigation Jump to search
(→‎Governing Equations: Working on raw generalization to arbitrary polytropic index)
(→‎Homologously Collapsing Polytropic Spheres: Work through some details of generalized homologous collapse)
Line 2: Line 2:
{{LSU_HBook_header}}
{{LSU_HBook_header}}
==Review of Goldreich and Weber (1980)==
==Review of Goldreich and Weber (1980)==
This is principally a review of the dynamical model that Peter Goldreich & Stephen Weber [http://adsabs.harvard.edu/abs/1980ApJ...238..991G (1980, ApJ, 238, 991)] developed to describe the near-homologous collapse of stellar cores.  As we began to study the Goldreich & Weber paper, it wasn't immediately obvious how the set of differential governing equations should be modified in order to accommodate a radially contracting (accelerating) coordinate system.  I did not understand the transformed set of equations presented by Goldreich & Weber as equations (7) and (8), for example.  At first, I turned to [http://www.sciencedirect.com/science/article/pii/S0021999106002555 Poludnenko & Khokhlov (2007, Journal of Computational Physics, 220, 678)] — hereafter, PK07 — for guidancePK07 develop a very general set of governing equations that allows for coordinate rotation as well as expansion or contraction.  Ultimately, the most helpful additional reference proved to be §19.11 (pp. 187 - 190) of Kippenhahn & Weigert [ [[User:Tohline/Appendix/References#KW94|KW94]] ].
In an [[User:Tohline/Apps/GoldreichWeber80#Homologously_Collapsing_Stellar_Cores|accompanying discussion]], we review the dynamical model that Peter Goldreich &amp; Stephen Weber [http://adsabs.harvard.edu/abs/1980ApJ...238..991G (1980, ApJ, 238, 991)] developed to describe the near-homologous collapse of stellar cores that obey an equation of state having an adiabatic index, <math>~\gamma=4/3</math> &#8212; and polytropic index, <math>~n=3</math>Here we examine whether or not this self-similar collapse model can be extended to configurations with arbitrary polytropic index.


==Governing Equations==
==Governing Equations==
We begin with the set of [[User:Tohline/Apps/GoldreichWeber80#GoverningWithStreamFunction|principal governing equations already written in terms of a stream function]], as developed in the accompanying discussion of Goldreich &amp; Weber's (1980) work.  Specifically, the continuity equation, the Euler equation, and the Poisson equation become, respectively,


===Length===
<div align="center" id="GoverningWithStreamFunction">
 
Following [http://adsabs.harvard.edu/abs/1980ApJ...238..991G Goldreich &amp; Weber (1980)], we choose the same length scale for normalization that is used in deriving the [[User:Tohline/SSC/Structure/Polytropes#Lane-Emden_equation|Lane-Emden equation]], which governs the hydrostatic structure of a polytrope of index {{ User:Tohline/Math/MP_PolytropicIndex }}, that is,
<div align="center">
<math>
a_\mathrm{n} \equiv \biggl[\frac{1}{4\pi G}~ \biggl( \frac{H_c}{\rho_c} \biggr)\biggr]^{1/2}  \, ,
</math>
</div>
where the subscript, "c", denotes central values and, [[User:Tohline/SR#Barotropic_Structure|as presented in our introductory discussion of barotropic supplemental relations]],
<div align="center">
<math>~H = (n+1) \kappa \rho^{1/n} \, .</math>
</div>
Substitution of this equation of state expression leads to,
<div align="center">
<math>
a = \biggl[\frac{(n+1)\kappa}{4\pi G}\biggr]^{1/2} \rho_c^{-(n-1)/(2n)}  \, .
</math>
</div>
''Most significantly'', Goldreich &amp; Weber (see their equation 6) allow the normalizing scale length to vary with time in order for the governing equations to accommodate a self-similar dynamical solution.  In doing this, they effectively adopted an ''accelerating'' coordinate system with a time-dependent dimensionless radial coordinate,
<div align="center">
<math>~\vec\mathfrak{x} \equiv \frac{1}{a(t)} \vec{r} \, .</math>
</div>
 
This, in turn, will mean that either the central density varies with time, or the specific entropy of all fluid elements (captured by the value of <math>~\kappa</math>) varies with time, or both.  In practice, Goldreich &amp; Weber assume that <math>~\kappa</math> is held fixed, so the time-variation in the scale length, <math>~a</math>, reflects a time-varying central density; specifically,
<div align="center">
<math>
\rho_c = \biggl\{ \biggl[\frac{(n+1)\kappa}{4\pi G}\biggr]^{1/2}  \frac{1}{a(t)} \biggr\}^{2n/(n-1)} \, .
</math>
</div>
 
Given the newly adopted dimensionless radial coordinate, the following replacements for the spatial operators should be made, as appropriate, throughout the set of governing equations:
<div align="center">
<math>~\nabla_r ~\rightarrow~ a^{-1} \nabla_\mathfrak{x}</math>&nbsp; &nbsp; &nbsp; &nbsp;
and
&nbsp; &nbsp; &nbsp; &nbsp;<math>~\nabla_r^2 ~\rightarrow~ a^{-2} \nabla_\mathfrak{x}^2 \, .</math>
</div>
 
Specifically, the continuity equation, the Euler equation, and the Poisson equation become, respectively,
 
<div align="center">
<table border="1" align="center" cellpadding="10" width="55%">
<table border="1" align="center" cellpadding="10" width="55%">
<tr><td align="center">
<tr><td align="center">
Line 89: Line 51:
</td></tr>
</td></tr>
</table>
</table>
</div>
Following [http://adsabs.harvard.edu/abs/1980ApJ...238..991G Goldreich &amp; Weber (1980)], the normalization length scale, <math>~a</math>, that appears in this set of equations is the same length scale that is used in deriving the [[User:Tohline/SSC/Structure/Polytropes#Lane-Emden_equation|Lane-Emden equation]], namely,
<div align="center">
<math>
a \equiv \biggl[\frac{1}{4\pi G}~ \biggl( \frac{H_c}{\rho_c} \biggr)\biggr]^{1/2}  \, ,
</math>
</div>
where the subscript, "c", denotes central values and, [[User:Tohline/SR#Barotropic_Structure|as presented in our introductory discussion of barotropic supplemental relations]],
<div align="center">
<math>~H = (n+1) \kappa \rho^{1/n} \, .</math>
</div>
But, unlike Goldreich &amp; Weber, we will leave the polytropic index unspecified.  Inserting this equation of state expression into the definition of the normalization length scale leads to,
<div align="center">
<math>
a = \biggl[\frac{(n+1)\kappa}{4\pi G}\biggr]^{1/2} \rho_c^{-(n-1)/(2n)}  \, .
</math>
</div>
Again, following Goldreich &amp; Weber, we allow the normalizing scale length to vary with time an adopt an ''accelerating'' coordinate system with a time-dependent dimensionless radial coordinate,
<div align="center">
<math>~\vec\mathfrak{x} \equiv \frac{1}{a(t)} \vec{r} \, .</math>
</div>
(The spatial operators in the above set of principal governing equations exhibit a subscript, <math>~\mathfrak{x}</math>, indicating the adoption of this accelerating coordinate system.)  This, in turn, reflects a time-varying central density; specifically,
<div align="center">
<math>
\rho_c = \biggl\{ \biggl[\frac{(n+1)\kappa}{4\pi G}\biggr]^{1/2}  \frac{1}{a(t)} \biggr\}^{2n/(n-1)} \, .
</math>
</div>
</div>


 
Next, we normalize the density by the central density, defining a dimensionless function,
===Mass-Density and Speed===
 
Next, [http://adsabs.harvard.edu/abs/1980ApJ...238..991G Goldreich &amp; Weber (1980)] (see their equation 10) choose to normalize the density by the central density, specifically defining a dimensionless function,
<div align="center">
<div align="center">
<math>f \equiv \biggl( \frac{\rho}{\rho_c} \biggr)^{1/3} \, .</math>
<math>f \equiv \biggl( \frac{\rho}{\rho_c} \biggr)^{1/n} \, ,</math>
</div>
</div>
Keeping in mind that <math>~n = 3</math>, this is also in line with the formulation and evaluation of the [[User:Tohline/SSC/Structure/Polytropes#Lane-Emden_equation|Lane-Emden equation]], where the primary ''dependent'' structural variable is the dimensionless polytropic enthalpy,  
which is in line with the formulation and evaluation of the [[User:Tohline/SSC/Structure/Polytropes#Lane-Emden_equation|Lane-Emden equation]], where the primary ''dependent'' structural variable is the dimensionless polytropic enthalpy,  
<div align="center">
<div align="center">
<math>\Theta_H \equiv \biggl( \frac{\rho}{\rho_c} \biggr)^{1/n} \, .</math>
<math>\Theta_H \equiv \biggl( \frac{\rho}{\rho_c} \biggr)^{1/n} \, .</math>
</div>
</div>


Also, [http://adsabs.harvard.edu/abs/1980ApJ...238..991G Goldreich &amp; Weber (1980)] (see their equation 11) normalize the gravitational potential to the square of the central sound speed,
And we normalize both the gravitational potential and the enthalpy to the square of the central sound speed,
<div align="center">
<div align="center">
<math>c_s^2 = \frac{\gamma P_c}{\rho_c} = \frac{4}{3} \kappa \rho_c^{1/3}  
<math>c_s^2 = \frac{\gamma P_c}{\rho_c} = \frac{H_c}{n} = \biggl( \frac{n+1}{n} \biggr) \kappa \rho_c^{1/n}  
= \frac{4}{3}\biggl(\frac{\kappa^3}{\pi G}\biggr)^{1/2} [a(t)]^{-1}  \, .</math>
= \biggl( \frac{n+1}{n} \biggr) \kappa
\biggl\{ \biggl[\frac{(n+1)\kappa}{4\pi G}\biggr]^{1/2} \frac{1}{a(t)} \biggr\}^{2/(n-1)}  
= \, .</math>
</div>
</div>
Specifically, their dimensionless gravitational potential is,
 
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\sigma</math>
<math>~c_s^2 = \frac{\gamma P_c}{\rho_c} = \frac{H_c}{n}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~\equiv</math>
<math>~=</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\frac{\Phi}{c_s^2} = \biggl[ \frac{3}{4} \biggl( \frac{\pi G}{\kappa^3} \biggr)^{1/2} a(t) \biggr] \Phi \, ,</math>
<math>~\biggl( \frac{n+1}{n} \biggr) \kappa \rho_c^{1/n}</math>
   </td>
   </td>
</tr>
</tr>
</table>
 
</div>
and the similarly normalized enthalpy may be written as,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\frac{H}{c_s^2} </math>
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 135: Line 120:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\biggl[ \frac{3}{4} \biggl( \frac{\pi G}{\kappa^3} \biggr)^{1/2} a(t) \biggr] 4\kappa \rho^{1/3} </math>
<math>~\biggl( \frac{n+1}{n} \biggr) \kappa
\biggl\{ \biggl[\frac{(n+1)\kappa}{4\pi G}\biggr]^{1/2} \frac{1}{a(t)} \biggr\}^{2/(n-1)}</math>
   </td>
   </td>
</tr>
</tr>
Line 147: Line 133:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~3 \biggl( \frac{\rho}{\rho_c} \biggr)^{1/3} </math>
<math>~\frac{1}{n} \biggl\{ \biggl[\frac{(n+1)^n \kappa^n}{4\pi G}\biggr]  \frac{1}{a^2(t)} \biggr\}^{1/(n-1)} \, ,</math>
   </td>
   </td>
</tr>
</tr>
 
</table>
</div>
giving,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\sigma</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~\frac{\Phi}{c_s^2} = n \biggl\{ \biggl[\frac{4\pi G}{(n+1)^n \kappa^n}\biggr]  a^2(t) \biggr\}^{1/(n-1)} \Phi \, ,</math>
  </td>
</tr>
</table>
</div>
and,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
<tr>
   <td align="right">
   <td align="right">
&nbsp;
<math>~\frac{H}{c_s^2} </math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 159: Line 165:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~3f \, .</math>
<math>~n \biggl( \frac{\rho}{\rho_c} \biggr)^{1/n}  = nf \, .</math>
   </td>
   </td>
</tr>
</tr>
Line 171: Line 177:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\frac{d\ln f^3}{dt}  </math>
<math>~\frac{d\ln f^n}{dt}  </math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 190: Line 196:
   <td align="right">
   <td align="right">
<math>~
<math>~
\biggl[ \frac{3}{4} \biggl( \frac{\pi G}{\kappa^3} \biggr)^{1/2} a(t) \biggr]  
n \biggl\{ \biggl[\frac{4\pi G}{(n+1)^n \kappa^n}\biggr]  a^2(t) \biggr\}^{1/(n-1)}  
\biggl[ \frac{d\psi}{dt} - \frac{1}{2a^2} ( \nabla_\mathfrak{x} \psi )^2 \biggr]
\biggl[ \frac{d\psi}{dt} - \frac{1}{2a^2} ( \nabla_\mathfrak{x} \psi )^2 \biggr]
</math>
</math>
Line 198: Line 204:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~ - 3 f - \sigma  \, ;</math>
<math>~ - n f - \sigma  \, ;</math>
   </td>
   </td>
</tr>
</tr>
Line 206: Line 212:
and the Poisson equation becomes,
and the Poisson equation becomes,
<div align="center">
<div align="center">
<math>\nabla_\mathfrak{x}^2 \sigma = 3f^3 \, .</math>
<math>\nabla_\mathfrak{x}^2 \sigma = n f^n \, .</math>
</div>
</div>



Revision as of 23:28, 9 November 2014

Homologously Collapsing Polytropic Spheres

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Review of Goldreich and Weber (1980)

In an accompanying discussion, we review the dynamical model that Peter Goldreich & Stephen Weber (1980, ApJ, 238, 991) developed to describe the near-homologous collapse of stellar cores that obey an equation of state having an adiabatic index, <math>~\gamma=4/3</math> — and polytropic index, <math>~n=3</math>. Here we examine whether or not this self-similar collapse model can be extended to configurations with arbitrary polytropic index.

Governing Equations

We begin with the set of principal governing equations already written in terms of a stream function, as developed in the accompanying discussion of Goldreich & Weber's (1980) work. Specifically, the continuity equation, the Euler equation, and the Poisson equation become, respectively,

<math>~\frac{1}{\rho} \frac{d\rho}{dt} </math>

<math>~=</math>

<math>~-~ a^{-2} \nabla_\mathfrak{x}^2 \psi \, ;</math>

<math>~\frac{d\psi}{dt} </math>

<math>~=</math>

<math>~\frac{1}{2} a^{-2} ( \nabla_\mathfrak{x} \psi )^2 - H - \Phi \, ;</math>

<math>~a^{-2}\nabla_\mathfrak{x}^2 \Phi </math>

<math>~=</math>

<math>~4\pi G \rho \, .</math>

Following Goldreich & Weber (1980), the normalization length scale, <math>~a</math>, that appears in this set of equations is the same length scale that is used in deriving the Lane-Emden equation, namely,

<math> a \equiv \biggl[\frac{1}{4\pi G}~ \biggl( \frac{H_c}{\rho_c} \biggr)\biggr]^{1/2} \, , </math>

where the subscript, "c", denotes central values and, as presented in our introductory discussion of barotropic supplemental relations,

<math>~H = (n+1) \kappa \rho^{1/n} \, .</math>

But, unlike Goldreich & Weber, we will leave the polytropic index unspecified. Inserting this equation of state expression into the definition of the normalization length scale leads to,

<math> a = \biggl[\frac{(n+1)\kappa}{4\pi G}\biggr]^{1/2} \rho_c^{-(n-1)/(2n)} \, . </math>

Again, following Goldreich & Weber, we allow the normalizing scale length to vary with time an adopt an accelerating coordinate system with a time-dependent dimensionless radial coordinate,

<math>~\vec\mathfrak{x} \equiv \frac{1}{a(t)} \vec{r} \, .</math>

(The spatial operators in the above set of principal governing equations exhibit a subscript, <math>~\mathfrak{x}</math>, indicating the adoption of this accelerating coordinate system.) This, in turn, reflects a time-varying central density; specifically,

<math> \rho_c = \biggl\{ \biggl[\frac{(n+1)\kappa}{4\pi G}\biggr]^{1/2} \frac{1}{a(t)} \biggr\}^{2n/(n-1)} \, . </math>

Next, we normalize the density by the central density, defining a dimensionless function,

<math>f \equiv \biggl( \frac{\rho}{\rho_c} \biggr)^{1/n} \, ,</math>

which is in line with the formulation and evaluation of the Lane-Emden equation, where the primary dependent structural variable is the dimensionless polytropic enthalpy,

<math>\Theta_H \equiv \biggl( \frac{\rho}{\rho_c} \biggr)^{1/n} \, .</math>

And we normalize both the gravitational potential and the enthalpy to the square of the central sound speed,

<math>c_s^2 = \frac{\gamma P_c}{\rho_c} = \frac{H_c}{n} = \biggl( \frac{n+1}{n} \biggr) \kappa \rho_c^{1/n} = \biggl( \frac{n+1}{n} \biggr) \kappa \biggl\{ \biggl[\frac{(n+1)\kappa}{4\pi G}\biggr]^{1/2} \frac{1}{a(t)} \biggr\}^{2/(n-1)} = \, .</math>

<math>~c_s^2 = \frac{\gamma P_c}{\rho_c} = \frac{H_c}{n}</math>

<math>~=</math>

<math>~\biggl( \frac{n+1}{n} \biggr) \kappa \rho_c^{1/n}</math>

 

<math>~=</math>

<math>~\biggl( \frac{n+1}{n} \biggr) \kappa \biggl\{ \biggl[\frac{(n+1)\kappa}{4\pi G}\biggr]^{1/2} \frac{1}{a(t)} \biggr\}^{2/(n-1)}</math>

 

<math>~=</math>

<math>~\frac{1}{n} \biggl\{ \biggl[\frac{(n+1)^n \kappa^n}{4\pi G}\biggr] \frac{1}{a^2(t)} \biggr\}^{1/(n-1)} \, ,</math>

giving,

<math>~\sigma</math>

<math>~\equiv</math>

<math>~\frac{\Phi}{c_s^2} = n \biggl\{ \biggl[\frac{4\pi G}{(n+1)^n \kappa^n}\biggr] a^2(t) \biggr\}^{1/(n-1)} \Phi \, ,</math>

and,

<math>~\frac{H}{c_s^2} </math>

<math>~=</math>

<math>~n \biggl( \frac{\rho}{\rho_c} \biggr)^{1/n} = nf \, .</math>

With these additional scalings, the continuity equation becomes,

<math>~\frac{d\ln f^n}{dt} </math>

<math>~=</math>

<math>~-~ a^{-2} \nabla_\mathfrak{x}^2 \psi \, ,</math>

the Euler equation becomes,

<math>~ n \biggl\{ \biggl[\frac{4\pi G}{(n+1)^n \kappa^n}\biggr] a^2(t) \biggr\}^{1/(n-1)} \biggl[ \frac{d\psi}{dt} - \frac{1}{2a^2} ( \nabla_\mathfrak{x} \psi )^2 \biggr] </math>

<math>~=</math>

<math>~ - n f - \sigma \, ;</math>

and the Poisson equation becomes,

<math>\nabla_\mathfrak{x}^2 \sigma = n f^n \, .</math>


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation