Difference between revisions of "User:Tohline/Appendix/Ramblings/ConcentricEllipsodalT12Coordinates"

From VistrailsWiki
Jump to navigation Jump to search
 
(22 intermediate revisions by the same user not shown)
Line 61: Line 61:


==Generalized Prescription for 2<sup>nd</sup> Coordinate==
==Generalized Prescription for 2<sup>nd</sup> Coordinate==
===Default===


Let's adopt the following generalized prescription for the 2<sup>nd</sup> coordinate:
Let's adopt the following generalized prescription for the 2<sup>nd</sup> coordinate:
Line 174: Line 176:
Henceforth, we will refer to this algebraic relation as the "<font color="red">One-Two Perpendicular Constraint</font>."
Henceforth, we will refer to this algebraic relation as the "<font color="red">One-Two Perpendicular Constraint</font>."


==Necessary 3<sup>rd</sup> Coordinate==
===Arctangent===


The unit vector associated with the 3<sup>rd</sup> coordinate is obtained from the cross product of the first two unit vectors.  That is,
Instead, let's try,
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\hat{e}_3</math>
<math>~\lambda_2</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~=</math>
<math>~\equiv</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\hat{e}_1 \times \hat{e}_2</math>
<math>~
\tan^{-1} [x^a y^b z^c] \, .
</math>
   </td>
   </td>
</tr>
</tr>
</table>
Then,
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
&nbsp;
<math>~\frac{\partial \lambda_2}{\partial x_i}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 200: Line 207:
   <td align="left">
   <td align="left">
<math>~
<math>~
\hat\imath \biggl[ e_{1y} e_{2z} - e_{1z} e_{2y} \biggr]
\biggl[ \frac{1}{1+\tan^2\lambda_2} \biggr]
+
\frac{\partial }{\partial x_i} \biggl[ x^a y^b z^c \biggr]  
\hat\jmath \biggl[ e_{1z}e_{2x} - e_{1x}e_{2z} \biggr]
=
+
\cos^2\lambda_2 \cdot \frac{\partial }{\partial x_i} \biggl[ x^a y^b z^c \biggr]  
\hat{k} \biggl[ e_{1x}e_{2y} - e_{1y}e_{2x} \biggr]
\, ;
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
that is,
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
&nbsp;
<math>~\frac{\partial \lambda_2}{\partial x}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 217: Line 229:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\frac{\ell_{3D}}{\mathfrak{L}} \biggl\{
<math>~
\hat\imath \biggl[ (q^2y) \biggl( \frac{xy}{ab} \biggr) - (p^2z) \biggl( \frac{xz}{ac} \biggr) \biggr]
\cos^2\lambda_2 \cdot
+
\biggl[ x^a y^b z^c \biggr] \frac{a}{x}
\hat\jmath \biggl[ (p^2z) \biggl( \frac{yz}{bc} \biggr) - (x)\biggl( \frac{xy}{ab} \biggr) \biggr]
=
+
\cos^2\lambda_2 \cdot
\hat{k} \biggl[ (x) \biggl( \frac{xz}{ac} \biggr) - (q^2y) \biggl( \frac{yz}{bc} \biggr) \biggr]
\biggl[ \tan\lambda_2 \biggr] \frac{a}{x}
\biggr\}
=
\sin\lambda_2 \cos\lambda_2  \biggl( \frac{a}{x} \biggr) \, ,
</math>
</math>
   </td>
   </td>
Line 230: Line 243:
<tr>
<tr>
   <td align="right">
   <td align="right">
&nbsp;
<math>~\frac{\partial \lambda_2}{\partial y}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 236: Line 249:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\frac{\ell_{3D}}{\mathfrak{L}(abc)} \biggl\{
<math>~
\hat\imath \biggl[ (cq^2y^2) - (b p^2z^2) \biggr]x
\sin\lambda_2 \cos\lambda_2 \biggl( \frac{b}{y} \biggr) \, ,
+
\hat\jmath \biggl[ (ap^2z^2) - (cx^2) \biggr]y
+
\hat{k} \biggl[ (bx^2) - (aq^2y^2) \biggr]z
\biggr\}
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
==Old Examples==
===T6 Coordinates===
In the set that we have [[User:Tohline/Appendix/Ramblings/ConcentricEllipsodalCoordinates#Analysis|elsewhere referenced as T6 coordinates]], we chose:  a = - 1, b = q<sup>-2</sup>, c = 0.  We note, first, that this set of parameter values satisfies the [[#OneTwoPerp|above-defined]] <font color="red">One-Two Perpendicular Constraint</font>.  In this case, our ''generalized prescription for the 2<sup>nd</sup> coordinate'' generates a unit vector of the form,
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\hat{e}_2</math>
<math>~\frac{\partial \lambda_2}{\partial z}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 263: Line 264:
   <td align="left">
   <td align="left">
<math>~
<math>~
\frac{1}{\mathfrak{L}_{T6} (abc)}
\sin\lambda_2 \cos\lambda_2 \biggl( \frac{c}{z} \biggr) \ .
\biggl[
</math>
\hat\imath (ayz)  
   </td>
+ \hat\jmath (bxz) 
</tr>
+ \hat{k} (cxy) 
</table>
\biggr]
Hence,
=
<table border="0" cellpadding="5" align="center">
\frac{z}{q^2 \mathfrak{L}_{T6} (abc)}
\biggl[
-\hat\imath (q^2y) 
+ \hat\jmath (x) 
\biggr]
</math>
   </td>
</tr>


<tr>
<tr>
   <td align="right">
   <td align="right">
&nbsp;
<math>~h_2^{-2}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 288: Line 281:
   <td align="left">
   <td align="left">
<math>~
<math>~
\biggl[
\sin^2\lambda_2 \cos^2\lambda_2 \biggl[
-\hat\imath (q^2y)
\frac{a^2}{x^2} + \frac{b^2}{y^2} + \frac{c^2}{z^2}
+ \hat\jmath (x)
\biggr]
\biggr] \ell_q \, ,
=
\frac{\sin^2\lambda_2 \cos^2\lambda_2}{(xyz)^2} \biggl[
a^2(yz)^2 + b^2(xz)^2 + c^2(xy)^2
\biggr]
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
where,
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\ell_q^{-2} \equiv \biggl[ \frac{q^4\mathfrak{L}_{T6}^2(abc)^2}{z^2}\biggr]</math>
<math>~\Rightarrow ~~~ h_2</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 307: Line 300:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~
<math>~ \frac{1}{\sin\lambda_2 \cos\lambda_2} \biggl[
\frac{q^4}{z^2}\biggl[
\frac{xyz}{ \mathfrak{L} (abc)}
(yz)^2 + b^2(xz)^2
\biggr] \, .
\biggr]
=
\biggl[ x^2 + q^4y^2 \biggr] \, .
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
</table>
 
And the associated unit vector is,
And it implies a unit vector for the 3<sup>rd</sup> coordinate of the form,
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\hat{e}_3</math>
<math>~\hat{e}_2</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 329: Line 318:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\frac{\ell_{3D}}{\mathfrak{L}_{T6} (abc)} \biggl\{
<math>~
\hat\imath \biggl[ (cq^2y^2- (b p^2z^2) \biggr]x
\frac{1}{\mathfrak{L}}
+
\biggl[
\hat\jmath \biggl[ (ap^2z^2) - (cx^2) \biggr]y
\hat\imath \biggl(\frac{yz}{bc}\biggr)   
+
+ \hat\jmath \biggl(\frac{xz}{ac}\biggr
\hat{k} \biggl[ (bx^2) - (aq^2y^2) \biggr]z
+ \hat{k} \biggl(\frac{xy}{ab}\biggr
\biggr\}
\biggr] \, ,
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
which is the same as our default situation.


<tr>
==Necessary 3<sup>rd</sup> Coordinate==
 
The unit vector associated with the 3<sup>rd</sup> coordinate is obtained from the cross product of the first two unit vectors.  That is,
<table border="0" cellpadding="5" align="center">
 
<tr>
   <td align="right">
   <td align="right">
&nbsp;
<math>~\hat{e}_3</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 348: Line 344:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\ell_{3D}\biggl( \frac{\ell_q q^2}{z} \biggr) \biggl\{
<math>~\hat{e}_1 \times \hat{e}_2</math>
-\hat\imath \biggl[  \frac{p^2z^2}{q^2}\biggr] x
-
\hat\jmath \biggl[ p^2z^2  \biggr]y
+
\hat{k} \biggl[ \frac{x^2}{q^2} + q^2y^2 \biggr]z
\biggr\}
</math>
   </td>
   </td>
</tr>
</tr>
Line 367: Line 356:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\ell_q \ell_{3D} \biggl\{
<math>~
-\hat\imath (x p^2z )
\hat\imath \biggl[ e_{1y} e_{2z} - e_{1z} e_{2y} \biggr]
-
+
\hat\jmath (q^2y p^2z)
\hat\jmath \biggl[ e_{1z}e_{2x} - e_{1x}e_{2z} \biggr]
+
+
\hat{k} (x^2 + q^4 y^2)
\hat{k} \biggl[ e_{1x}e_{2y} - e_{1y}e_{2x} \biggr]
\biggr\} \, .
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
===T10 Coordinates===
In the set that we have [[User:Tohline/Appendix/Ramblings/ConcentricEllipsodalCoordinates#PartBCoordinatesT10|elsewhere referenced as T10 coordinates]], we chose:  a = 1, b = q<sup>-2</sup>, c = - 2p<sup>-2</sup>.  We note, first, that this set of parameter values satisfies the [[#OneTwoPerp|above-defined]] <font color="red">One-Two Perpendicular Constraint</font>. In this case, our ''generalized prescription for the 2<sup>nd</sup> coordinate'' generates a unit vector of the form,
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\hat{e}_2</math>
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 391: Line 374:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~
<math>~\frac{\ell_{3D}}{\mathfrak{L}} \biggl\{
\frac{1}{\mathfrak{L}_{T10} (abc)}
\hat\imath \biggl[ (q^2y) \biggl( \frac{xy}{ab} \biggr) - (p^2z) \biggl( \frac{xz}{ac} \biggr) \biggr]
\biggl[
+
\hat\imath (ayz)
\hat\jmath \biggl[ (p^2z) \biggl( \frac{yz}{bc} \biggr) - (x)\biggl( \frac{xy}{ab} \biggr) \biggr]
+ \hat\jmath (bxz)
+
+ \hat{k} (cxy)
\hat{k} \biggl[ (x) \biggl( \frac{xz}{ac} \biggr) - (q^2y) \biggl( \frac{yz}{bc} \biggr) \biggr]
\biggr]  
\biggr\}
=
\frac{1}{q^2 p^2 \mathfrak{L}_{T10} (abc)}
\biggl[
\hat\imath (q^2y p^2z)
+ \hat\jmath ( x p^2 z )
- \hat{k} ( 2xq^2y)
\biggr]
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
 
where,
<table border="0" cellpadding="5" align="center">
 
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~(abc)^2\mathfrak{L}^2_{T10}</math>
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~\equiv</math>
<math>~=</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~
<math>~\frac{\ell_{3D}}{\mathfrak{L}(abc)} \biggl\{
\biggl[
\hat\imath \biggl[ (cq^2y^2)  - (b p^2z^2) \biggr]x
a^2(yz)^2 + b^2(xz)^2 + c^2(xy)^2
+
\biggr]
\hat\jmath \biggl[ (ap^2z^2) - (cx^2) \biggr]y
=
+
\biggl[
\hat{k} \biggl[ (bx^2) - (aq^2y^2) \biggr]z
y^2z^2 + \frac{x^2 z^2}{q^4} + \frac{4x^2 y^2}{p^4}
\biggr\}
\biggr]
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>


<tr>
==Old Examples==
 
===T6 Coordinates===
In the set that we have [[User:Tohline/Appendix/Ramblings/ConcentricEllipsodalCoordinates#Analysis|elsewhere referenced as T6 coordinates]], we chose:  a = - 1, b = q<sup>-2</sup>, c = 0.  We note, first, that this set of parameter values satisfies the [[#OneTwoPerp|above-defined]] <font color="red">One-Two Perpendicular Constraint</font>.  In this case, our ''generalized prescription for the 2<sup>nd</sup> coordinate'' generates a unit vector of the form,
<table border="0" cellpadding="5" align="center">
 
<tr>
   <td align="right">
   <td align="right">
<math>~\Rightarrow~~~\mathcal{D}^2 \equiv q^4p^4(abc)^2\mathfrak{L}^2_{T10}</math>
<math>~\hat{e}_2</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 441: Line 420:
   <td align="left">
   <td align="left">
<math>~
<math>~
\biggl[   
\frac{1}{\mathfrak{L}_{T6} (abc)}
q^4y^2 p^4z^2 + x^2 p^4z^2 + 4x^2 q^4y^2
\biggl[
\biggr] \, .
\hat\imath (ayz) 
+ \hat\jmath (bxz) 
+ \hat{k} (cxy)  
\biggr]
=
\frac{z}{q^2 \mathfrak{L}_{T6} (abc)}
\biggl[
-\hat\imath (q^2y) 
+ \hat\jmath (x
\biggr]  
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
And it implies a unit vector for the 3<sup>rd</sup> coordinate of the form,
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\hat{e}_3</math>
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 461: Line 444:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\frac{\ell_{3D}}{\mathcal{D}} \biggl\{
<math>~
\hat\imath \biggl[ (cq^2y^2- (b p^2z^2) \biggr]x
\biggl[
+
-\hat\imath (q^2y)   
\hat\jmath \biggl[ (ap^2z^2) - (cx^2) \biggr]y
+ \hat\jmath (x)
+
\biggr] \ell_q \, ,
\hat{k} \biggl[ (bx^2) - (aq^2y^2) \biggr]z
\biggr\} q^2 p^2
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
where,
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
&nbsp;
<math>~\ell_q^{-2} \equiv \biggl[ \frac{q^4\mathfrak{L}_{T6}^2(abc)^2}{z^2}\biggr]</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 480: Line 464:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\frac{\ell_{3D}}{\mathcal{D}} \biggl\{
<math>~
- \hat\imath \biggl[ 2q^4y^2 + p^4z^2 \biggr]x
\frac{q^4}{z^2}\biggl[   
+
(yz)^2 + b^2(xz)^2  
\hat\jmath \biggl[ p^4z^2 + 2x^2 \biggr]q^2y
\biggr]  
+
=
\hat{k} \biggl[ x^2 - q^4y^2 \biggr]p^2z
\biggl[ x^2 + q^4y^2 \biggr] \, .
\biggr\} \, .
</math>
</math>
   </td>
   </td>
Line 492: Line 475:
</table>
</table>


==Develop 3<sup>rd</sup>-Coordinate Profile==
And it implies a unit vector for the 3<sup>rd</sup> coordinate of the form,
 
===Setup===
 
Reflecting back on an [[User:Tohline/Appendix/Ramblings/ConcentricEllipsodalCoordinates#Search_for_Third_Coordinate_Expression|earlier exploration]], let's define the two polynomials,
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\mathfrak{A} \equiv \ell_{3D}^{-2}</math>
<math>~\hat{e}_3</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 507: Line 486:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~(x^2 + q^4y^2 + p^4z^2) \, ,</math>
<math>~\frac{\ell_{3D}}{\mathfrak{L}_{T6} (abc)} \biggl\{
\hat\imath \biggl[ (cq^2y^2)  - (b p^2z^2) \biggr]x
+
\hat\jmath \biggl[ (ap^2z^2) - (cx^2) \biggr]y
+
\hat{k} \biggl[ (bx^2) - (aq^2y^2) \biggr]z
\biggr\}
</math>
   </td>
   </td>
</tr>
</tr>
Line 513: Line 499:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\mathfrak{B} \equiv [\mathfrak{L}(abc)]^2</math>
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 519: Line 505:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~
<math>~\ell_{3D}\biggl( \frac{\ell_q q^2}{z} \biggr) \biggl\{
[a^2(yz)^2 + b^2(xz)^2 + c^2(xy)^2] \, .
-\hat\imath \biggl[ \frac{p^2z^2}{q^2}\biggr] x
</math>
-
\hat\jmath \biggl[ p^2z^2 \biggr]y
+
\hat{k} \biggl[ \frac{x^2}{q^2} + q^2y^2 \biggr]z
\biggr\}
</math>
   </td>
   </td>
</tr>
</tr>
</table>
<table border="1" align="center" cellpadding="10"><tr><td align="left">
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\frac{\partial \mathfrak{A}}{\partial x}</math>
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 538: Line 524:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~2x \, ,</math>
<math>~\ell_q \ell_{3D} \biggl\{
-\hat\imath (x p^2z )
-
\hat\jmath (q^2y p^2z)
+
\hat{k} (x^2 + q^4 y^2)
\biggr\} \, .
</math>
   </td>
   </td>
</tr>
</tr>
</table>
===T10 Coordinates===
In the set that we have [[User:Tohline/Appendix/Ramblings/ConcentricEllipsodalCoordinates#PartBCoordinatesT10|elsewhere referenced as T10 coordinates]], we chose:  a = 1, b = q<sup>-2</sup>, c = - 2p<sup>-2</sup>.  We note, first, that this set of parameter values satisfies the [[#OneTwoPerp|above-defined]] <font color="red">One-Two Perpendicular Constraint</font>. In this case, our ''generalized prescription for the 2<sup>nd</sup> coordinate'' generates a unit vector of the form,
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\frac{\partial \mathfrak{A}}{\partial y}</math>
<math>~\hat{e}_2</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 550: Line 548:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~2q^4 y \, ,</math>
<math>~
\frac{1}{\mathfrak{L}_{T10} (abc)}
\biggl[
\hat\imath (ayz) 
+ \hat\jmath (bxz) 
+ \hat{k} (cxy) 
\biggr]
=
\frac{1}{q^2 p^2 \mathfrak{L}_{T10} (abc)}
\biggl[
\hat\imath (q^2y p^2z) 
+ \hat\jmath ( x p^2 z ) 
- \hat{k} ( 2xq^2y) 
\biggr]
</math>
   </td>
   </td>
</tr>
</tr>
</table>
where,
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\frac{\partial \mathfrak{A}}{\partial z}</math>
<math>~(abc)^2\mathfrak{L}^2_{T10}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~=</math>
<math>~\equiv</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~2p^4 z \, ;</math>
<math>~
   </td>
\biggl[ 
</tr>
a^2(yz)^2 + b^2(xz)^2 + c^2(xy)^2
\biggr]
=
\biggl[ 
y^2z^2 + \frac{x^2 z^2}{q^4} + \frac{4x^2 y^2}{p^4}
\biggr]
</math>
   </td>
</tr>


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\frac{\partial \mathfrak{B}}{\partial x}</math>
<math>~\Rightarrow~~~\mathcal{D}^2 \equiv q^4p^4(abc)^2\mathfrak{L}^2_{T10}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 574: Line 597:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~2x(b^2z^2 + c^2y^2) \, ,</math>
<math>~
\biggl[ 
q^4y^2 p^4z^2 + x^2 p^4z^2 + 4x^2 q^4y^2  
\biggr] \, .
</math>
   </td>
   </td>
</tr>
</tr>
</table>
And it implies a unit vector for the 3<sup>rd</sup> coordinate of the form,
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\frac{\partial \mathfrak{B}}{\partial y}</math>
<math>~\hat{e}_3</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 586: Line 618:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~2y(a^2 z^2 + c^2x^2) \, ,</math>
<math>~\frac{\ell_{3D}}{\mathcal{D}} \biggl\{
   </td>
\hat\imath \biggl[ (cq^2y^2)  - (b p^2z^2) \biggr]x
+
\hat\jmath \biggl[ (ap^2z^2) - (cx^2) \biggr]y
+
\hat{k} \biggl[ (bx^2) - (aq^2y^2) \biggr]z
\biggr\} q^2 p^2
</math>
   </td>
</tr>
</tr>


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\frac{\partial \mathfrak{B}}{\partial z}</math>
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 598: Line 637:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~2z(a^2 y^2 + b^2x^2) \, .</math>
<math>~\frac{\ell_{3D}}{\mathcal{D}} \biggl\{
- \hat\imath \biggl[ 2q^4y^2 + p^4z^2 \biggr]x
+
\hat\jmath \biggl[ p^4z^2 + 2x^2 \biggr]q^2y
+
\hat{k} \biggl[ x^2 - q^4y^2 \biggr]p^2z
\biggr\} \, .
</math>
   </td>
   </td>
</tr>
</tr>
</table>
</table>
</td></tr></table>


<span id="needed">Then the 3<sup>rd</sup> unit vector may be written as,</span>
==Develop 3<sup>rd</sup>-Coordinate Profile==
 
===Setup===
 
Reflecting back on an [[User:Tohline/Appendix/Ramblings/ConcentricEllipsodalCoordinates#Search_for_Third_Coordinate_Expression|earlier exploration]], let's define the two polynomials,
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~[\hat{e}_3]_\mathrm{needed}</math>
<math>~\mathfrak{A} \equiv \ell_{3D}^{-2}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~=</math>
<math>~=</math>
   </td>
   </td>
<td align="left">
  <td align="left">
<math>~\mathfrak{A}^{-1 / 2} \mathfrak{B}^{-1 / 2} \biggl\{
<math>~(x^2 + q^4y^2 + p^4z^2) \, ,</math>
\hat\imath \biggl[ (cq^2y^2)  - (b p^2z^2) \biggr]x
+
\hat\jmath \biggl[ (ap^2z^2) - (cx^2) \biggr]y
+
\hat{k} \biggl[ (bx^2) - (aq^2y^2) \biggr]z
\biggr\} \, .
</math>
   </td>
   </td>
</tr>
</tr>
</table>
===Guess Third Coordinate Expression===
Let's see what unit vector results if we define,
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\lambda_3</math>
<math>~\mathfrak{B} \equiv [\mathfrak{L}(abc)]^2</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~\equiv</math>
<math>~=</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\mathfrak{A}^{1 / 2} \mathfrak{B}^{-1 / 2} \, .</math>
<math>~
[a^2(yz)^2 + b^2(xz)^2 + c^2(xy)^2] \, .
</math>
   </td>
   </td>
</tr>
</tr>
</table>
</table>


====Partial Derivatives====
 
<table border="1" align="center" cellpadding="10"><tr><td align="left">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\frac{\partial \lambda_3}{\partial x_i}</math>
<math>~\frac{\partial \mathfrak{A}}{\partial x}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 655: Line 695:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~
<math>~2x \, ,</math>
\biggl[ \frac{1}{2} \mathfrak{A}^{-1 / 2} \mathfrak{B}^{-1 / 2}\biggr] \frac{\partial \mathfrak{A}}{\partial x_i}
- \biggl[ \frac{1}{2} \mathfrak{A}^{1 / 2} \mathfrak{B}^{- 3 / 2} \biggr] \frac{\partial \mathfrak{B}}{\partial x_i}
</math>
   </td>
   </td>
</tr>
</tr>
Line 664: Line 701:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\Rightarrow~~~ \biggl[ \frac{2\mathfrak{A}\mathfrak{B}}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial x_i}</math>
<math>~\frac{\partial \mathfrak{A}}{\partial y}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 670: Line 707:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~
<math>~2q^4 y \, ,</math>
\mathfrak{B}\cdot \frac{\partial \mathfrak{A}}{\partial x_i}
-
\mathfrak{A}\cdot  \frac{\partial \mathfrak{B}}{\partial x_i} \, .
</math>
   </td>
   </td>
</tr>
</tr>
</table>
First, note that,
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~ \biggl[ \frac{2\mathfrak{A}\mathfrak{B}}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial x}</math>
<math>~\frac{\partial \mathfrak{A}}{\partial z}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 690: Line 719:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~
<math>~2p^4 z \, ;</math>
\mathfrak{B} \biggl[ 2x \biggr]
-
\mathfrak{A}\biggl[ 2x (b^2z^2 + c^2 y^2)\biggr]
</math>
   </td>
   </td>
</tr>
</tr>
Line 700: Line 725:
<tr>
<tr>
   <td align="right">
   <td align="right">
&nbsp;
<math>~\frac{\partial \mathfrak{B}}{\partial x}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 706: Line 731:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~2x \biggl[
<math>~2x(b^2z^2 + c^2y^2) \, ,</math>
a^2(yz)^2 + b^2(xz)^2 + c^2(xy)^2
-
(x^2 + q^4y^2 + p^4z^2)(b^2z^2 + c^2 y^2) \biggr]
</math>
   </td>
   </td>
</tr>
</tr>
Line 716: Line 737:
<tr>
<tr>
   <td align="right">
   <td align="right">
&nbsp;
<math>~\frac{\partial \mathfrak{B}}{\partial y}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 722: Line 743:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~2x \biggl[
<math>~2y(a^2 z^2 + c^2x^2) \, ,</math>
a^2(yz)^2 + b^2(xz)^2 + c^2(xy)^2
-
x^2 (b^2z^2 + c^2 y^2)
-
q^4y^2 (b^2z^2 + c^2 y^2)
-
p^4z^2(b^2z^2 + c^2 y^2)  
 
\biggr]
</math>
   </td>
   </td>
</tr>
</tr>
Line 738: Line 749:
<tr>
<tr>
   <td align="right">
   <td align="right">
&nbsp;
<math>~\frac{\partial \mathfrak{B}}{\partial z}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 744: Line 755:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~2x \biggl\{
<math>~2z(a^2 y^2 + b^2x^2) \, .</math>
(yz)^2[a^2 - q^4b^2 - c^2p^4] + (xz)^2[b^2 - b^2] + (xy)^2 [c^2 - c^2]
   </td>
-
</tr>
c^2 q^4y^4
</table>
-
</td></tr></table>
b^2p^4z^4
 
\biggr\}
<span id="needed">Then the 3<sup>rd</sup> unit vector may be written as,</span>
</math>
<table border="0" cellpadding="5" align="center">
   </td>
</tr>


<tr>
<tr>
   <td align="right">
   <td align="right">
&nbsp;
<math>~[\hat{e}_3]_\mathrm{needed}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~=</math>
<math>~=</math>
   </td>
   </td>
  <td align="left">
<td align="left">
<math>~2x \biggl[
<math>~\mathfrak{A}^{-1 / 2} \mathfrak{B}^{-1 / 2} \biggl\{
y^2z^2(a^2 - q^4b^2 - c^2p^4)
\hat\imath \biggl[ (cq^2y^2)  - (b p^2z^2) \biggr]x
-
+
c^2 q^4y^4
\hat\jmath \biggl[ (ap^2z^2) - (cx^2) \biggr]y
-  
+
b^2p^4z^4
\hat{k} \biggl[ (bx^2) - (aq^2y^2) \biggr]z
\biggr] \, ;
\biggr\} \, .
</math>
</math>
   </td>
   </td>
Line 775: Line 784:
</table>
</table>


===Guess Third Coordinate Expression===
Let's see what unit vector results if we define,
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~ \biggl[ \frac{2\mathfrak{A}\mathfrak{B}}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial y}</math>
<math>~\lambda_3</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~=</math>
<math>~\equiv</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~
<math>~\mathfrak{A}^{1 / 2} \mathfrak{B}^{-1 / 2} \, .</math>
\mathfrak{B} \biggl[ 2q^4y \biggr]
-
\mathfrak{A}\biggl[ 2y(a^2 z^2 + c^2x^2) \biggr]
</math>
   </td>
   </td>
</tr>
</tr>
</table>
====Partial Derivatives====
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
&nbsp;
<math>~\frac{\partial \lambda_3}{\partial x_i}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 801: Line 812:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~2y \biggl[
<math>~
q^4[a^2(yz)^2 + b^2(xz)^2 + c^2(xy)^2]
\biggl[ \frac{1}{2} \mathfrak{A}^{-1 / 2} \mathfrak{B}^{-1 / 2}\biggr] \frac{\partial \mathfrak{A}}{\partial x_i}
-  
- \biggl[ \frac{1}{2} \mathfrak{A}^{1 / 2} \mathfrak{B}^{- 3 / 2} \biggr] \frac{\partial \mathfrak{B}}{\partial x_i}
(a^2 z^2 + c^2x^2) (x^2 + q^4y^2 + p^4z^2)
\biggr]
</math>
</math>
   </td>
   </td>
Line 812: Line 821:
<tr>
<tr>
   <td align="right">
   <td align="right">
&nbsp;
<math>~\Rightarrow~~~ \biggl[ \frac{2\mathfrak{A}\mathfrak{B}}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial x_i}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 818: Line 827:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~2y \biggl[
<math>~
a^2q^4(yz)^2 + b^2q^4(xz)^2 + c^2q^4(xy)^2
\mathfrak{B}\cdot \frac{\partial \mathfrak{A}}{\partial x_i}
-  
-  
a^2 z^2 (x^2 + q^4y^2 + p^4z^2)
\mathfrak{A}\cdot  \frac{\partial \mathfrak{B}}{\partial x_i} \, .
-
c^2x^2 (x^2 + q^4y^2 + p^4z^2)
\biggr]
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
First, note that,
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
&nbsp;
<math>~ \biggl[ \frac{2\mathfrak{A}\mathfrak{B}}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial x}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 837: Line 847:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~2y \biggl\{
<math>~
(yz)^2 \biggl[  a^2q^4 - a^2q^4\biggr] + (xz)^2\biggl[ b^2q^4 -a^2 - c^2p^4\biggr] + (xy)^2 \biggl[ c^2q^4 - c^2q^4 \biggr]
\mathfrak{B} \biggl[ 2x \biggr]
-  
-  
a^2 p^4z^4
\mathfrak{A}\biggl[ 2x (b^2z^2 + c^2 y^2)\biggr]
-
c^2x^4
\biggr\}
</math>
</math>
   </td>
   </td>
Line 856: Line 863:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~2y \biggl[
<math>~2x \biggl[
x^2z^2 ( b^2q^4 -a^2 - c^2p^4 )
a^2(yz)^2 + b^2(xz)^2 + c^2(xy)^2
-  
-  
a^2 p^4z^4
(x^2 + q^4y^2 + p^4z^2)(b^2z^2 + c^2 y^2) \biggr]
-
c^2x^4
\biggr] \, ;
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~ \biggl[ \frac{2\mathfrak{A}\mathfrak{B}}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial z}</math>
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 878: Line 879:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~
<math>~2x \biggl[
\mathfrak{B} \biggl[ 2p^4z \biggr]
a^2(yz)^2 + b^2(xz)^2 + c^2(xy)^2
-
x^2 (b^2z^2 + c^2 y^2)
-
q^4y^2 (b^2z^2 + c^2 y^2)
-  
-  
\mathfrak{A}\biggl[ 2z(a^2 y^2 + b^2x^2)\biggr]
p^4z^2(b^2z^2 + c^2 y^2)  
 
\biggr]
</math>
</math>
   </td>
   </td>
Line 894: Line 901:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~2z \biggl[
<math>~2x \biggl\{
p^4[a^2(yz)^2 + b^2(xz)^2 + c^2(xy)^2]
(yz)^2[a^2 - q^4b^2 - c^2p^4] + (xz)^2[b^2 - b^2] + (xy)^2 [c^2 - c^2]
-  
-  
(a^2 y^2 + b^2x^2)(x^2 + q^4y^2 + p^4z^2)
c^2 q^4y^4
\biggr]
-
b^2p^4z^4
\biggr\}
</math>
</math>
   </td>
   </td>
Line 911: Line 920:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~2z \biggl[
<math>~2x \biggl[
a^2p^4(yz)^2 + b^2p^4(xz)^2 + c^2p^4(xy)^2
y^2z^2(a^2 - q^4b^2 - c^2p^4)
-  
-  
a^2 y^2 (x^2 + q^4y^2 + p^4z^2)
c^2 q^4y^4
-  
-  
b^2x^2(x^2 + q^4y^2 + p^4z^2)
b^2p^4z^4
\biggr]
\biggr] \, ;
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
&nbsp;
<math>~ \biggl[ \frac{2\mathfrak{A}\mathfrak{B}}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial y}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 930: Line 942:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~2z \biggl\{
<math>~
(yz)^2 \biggl[ a^2p^4 - a^2p^4 \biggr] + (xz)^2 \biggl[ b^2p^4 - b^2p^4 \biggr] + (xy)^2 \biggl[c^2p^4 - a^2 - b^2q^4 \biggr]
\mathfrak{B} \biggl[ 2q^4y \biggr]
-  
-  
a^2 q^4y^4
\mathfrak{A}\biggl[ 2y(a^2 z^2 + c^2x^2) \biggr]
-
b^2x^4
\biggr\}
</math>
</math>
   </td>
   </td>
Line 949: Line 958:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~2z \biggl[
<math>~2y \biggl[
(xy)^2 ( c^2p^4 - a^2 - b^2q^4 )
q^4[a^2(yz)^2 + b^2(xz)^2 + c^2(xy)^2]
-  
-  
a^2 q^4y^4
(a^2 z^2 + c^2x^2) (x^2 + q^4y^2 + p^4z^2)
-
\biggr]
b^2x^4
\biggr] \, .
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
After completing a few squares, this last expression may be rewritten as &hellip;
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~ \biggl[ \frac{2\mathfrak{A}\mathfrak{B}}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial z}</math>
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 973: Line 975:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~2z \biggl[
<math>~2y \biggl[
(xy)^2 ( c^2p^4 - a^2 - b^2q^4 )
a^2q^4(yz)^2 + b^2q^4(xz)^2 + c^2q^4(xy)^2
-  
-  
a^2 q^4y^4
a^2 z^2 (x^2 + q^4y^2 + p^4z^2)
-  
-
b^2x^4
c^2x^2 (x^2 + q^4y^2 + p^4z^2)
\biggr]  
\biggr]
</math>
</math>
   </td>
   </td>
Line 992: Line 994:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~2z \biggl[
<math>~2y \biggl\{
(xy)^2 ( c^2p^4 - a^2 - b^2q^4 )
(yz)^2 \biggl[  a^2q^4 - a^2q^4\biggr] + (xz)^2\biggl[ b^2q^4 -a^2 - c^2p^4\biggr] + (xy)^2 \biggl[ c^2q^4 - c^2q^4 \biggr]
\pm 2abq^2(xy)^2 - (aq^2y^2 \pm bx^2)^2
-
\biggr]
a^2 p^4z^4
-
c^2x^4
\biggr\}
</math>
</math>
   </td>
   </td>
Line 1,008: Line 1,013:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~2z \biggl[
<math>~2y \biggl[
(xy)^2 ( c^2p^4 - a^2 - b^2q^4  
x^2z^2 ( b^2q^4 -a^2 - c^2p^4 )
\pm 2abq^2) - (aq^2y^2 \pm bx^2)^2
-
\biggr]  
a^2 p^4z^4
-
c^2x^4
\biggr] \, ;
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
&nbsp;
<math>~ \biggl[ \frac{2\mathfrak{A}\mathfrak{B}}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial z}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,024: Line 1,035:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~2z \biggl[
<math>~
(xy)^2 [ c^2p^4 -(a \pm bq^2)^2
\mathfrak{B} \biggl[ 2p^4z \biggr]
\pm 4abq^2] - (aq^2y^2 \pm bx^2)^2
-  
\biggr] \, .
\mathfrak{A}\biggl[ 2z(a^2 y^2 + b^2x^2)\biggr]
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
Now, if we choose the ''superior'' sign throughout this expression, the above-derived <font color="red">One-Two Perpendicular Constraint</font> can be satisfied by setting, <math>~(a + bq^2) = -cp^2</math>.  The expression then becomes,
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~ \biggl[ \frac{2\mathfrak{A}\mathfrak{B}}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial z}</math>
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,045: Line 1,051:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~-2z \biggl[
<math>~2z \biggl[
(aq^2y^2 + bx^2)^2 - 4abq^2 (xy)^2
p^4[a^2(yz)^2 + b^2(xz)^2 + c^2(xy)^2]
\biggr]  
-  
(a^2 y^2 + b^2x^2)(x^2 + q^4y^2 + p^4z^2)
\biggr]
</math>
</math>
   </td>
   </td>
Line 1,060: Line 1,068:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~
<math>~2z \biggl[
-2z (aq^2y^2 - bx^2)^2 \, .
a^2p^4(yz)^2 + b^2p^4(xz)^2 + c^2p^4(xy)^2
-  
a^2 y^2 (x^2 + q^4y^2 + p^4z^2)
-  
b^2x^2(x^2 + q^4y^2 + p^4z^2)
\biggr]
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
Similarly, we find,
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~ \biggl[ \frac{2\mathfrak{A}\mathfrak{B}}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial x}</math>
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,078: Line 1,087:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~2x \biggl[
<math>~2z \biggl\{
y^2z^2(a^2 - q^4b^2 - c^2p^4
(yz)^2 \biggl[ a^2p^4 - a^2p^4 \biggr] + (xz)^2 \biggl[ b^2p^4 - b^2p^4 \biggr] + (xy)^2 \biggl[c^2p^4 - a^2 - b^2q^4 \biggr]
-  
-  
c^2 q^4y^4  
a^2 q^4y^4  
-  
-  
b^2p^4z^4  
b^2x^4
\biggr]
\biggr\}
</math>
</math>
   </td>
   </td>
Line 1,097: Line 1,106:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~2x \biggl[
<math>~2z \biggl[
y^2z^2(a^2 - q^4b^2 - c^2p^4
(xy)^2 ( c^2p^4 - a^2 - b^2q^4 )
-
a^2 q^4y^4  
-  
-  
(cq^2y^2 \pm bp^2z^2)^2 \pm 2bcq^2y^2p^2z^2
b^2x^4
\biggr]  
\biggr] \, .
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
After completing a few squares, this last expression may be rewritten as &hellip;
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
&nbsp;
<math>~ \biggl[ \frac{2\mathfrak{A}\mathfrak{B}}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial z}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,114: Line 1,130:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~2x \biggl[
<math>~2z \biggl[
(yz)^2(a^2 - q^4b^2 - c^2p^4 \pm 2bcq^2p^2) 
(xy)^2 ( c^2p^4 - a^2 - b^2q^4 )
-
a^2 q^4y^4  
-  
-  
(cq^2y^2 \pm bp^2z^2)^2
b^2x^4
\biggr]  
\biggr]  
</math>
</math>
Line 1,131: Line 1,149:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~2x \biggl[
<math>~2z \biggl[
(yz)^2[a^2 - (bq^2 \pm cp^2)^2 \pm 4bcq^2p^2] 
(xy)^2 ( c^2p^4 - a^2 - b^2q^4 )
-  
\pm 2abq^2(xy)^2 - (aq^2y^2 \pm bx^2)^2
(cq^2y^2 \pm bp^2z^2)^2
\biggr]  
\biggr] \, .
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>


<table border="0" cellpadding="5" align="center">
<tr>
 
<tr>
   <td align="right">
   <td align="right">
<math>~ \biggl[ \frac{2\mathfrak{A}\mathfrak{B}}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial y}</math>
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,151: Line 1,165:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~2y \biggl[
<math>~2z \biggl[
x^2z^2 ( b^2q^4 -a^2 - c^2p^4 )
(xy)^2 ( c^2p^4 - a^2 - b^2q^4  
-
\pm 2abq^2) - (aq^2y^2 \pm bx^2)^2
a^2 p^4z^4
-
c^2x^4
\biggr]  
\biggr]  
</math>
</math>
Line 1,170: Line 1,181:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~2y \biggl[
<math>~2z \biggl[
x^2z^2 ( b^2q^4 -a^2 - c^2p^4 )
(xy)^2 [ c^2p^4 -(a \pm bq^2)^2
-  
\pm 4abq^2] - (aq^2y^2 \pm bx^2)^2
(ap^2z^2 \pm cx^2)^2 \pm 2acx^2p^2z^2
\biggr] \, .
\biggr]  
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
Now, if we choose the ''superior'' sign throughout this expression, the above-derived <font color="red">One-Two Perpendicular Constraint</font> can be satisfied by setting, <math>~(a + bq^2) = -cp^2</math>.  The expression then becomes,
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
&nbsp;
<math>~ \biggl[ \frac{2\mathfrak{A}\mathfrak{B}}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial z}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,187: Line 1,202:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~2y \biggl[
<math>~-2z \biggl[
x^2z^2 ( b^2q^4 -a^2 - c^2p^4 \pm 2acp^2 )  
(aq^2y^2 + bx^2)^2 - 4abq^2 (xy)^2
-
(ap^2z^2 \pm cx^2)^2  
\biggr]  
\biggr]  
</math>
</math>
Line 1,204: Line 1,217:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~2y \biggl[
<math>~
(xz)^2 [ b^2q^4 -(a\pm cp^2)^2 \pm 4acp^2 ]
-2z (aq^2y^2 - bx^2)^2 \, .
-  
(ap^2z^2 \pm cx^2)^2  
\biggr] \, .
</math>
</math>
   </td>
   </td>
Line 1,214: Line 1,224:
</table>
</table>


So, if we again choose the ''superior'' sign throughout these expression, the above-derived <font color="red">One-Two Perpendicular Constraint</font> can be satisfied:  &nbsp; In the first by setting, <math>~(bq^2 + cp^2) = - a</math>; and in the second by setting, <math>~(a + cp^2) = - bq^2</math>.  The expressions then become, respectively,


----
<table border="1" cellpadding="10" align="center" width="80%"><tr><td align="left">
Alternatively, suppose
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~ \biggl[ \frac{2\mathfrak{A}\mathfrak{B}}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial x}</math>
<math>~\lambda_3</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~=</math>
<math>~\equiv</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~
<math>~\mathfrak{A}^{m / 2} \mathfrak{B}^{-n/ 2} </math>
- 2x \biggl[
(cq^2y^2 + bp^2z^2)^2
- 4bcq^2 y^2 p^2 z^2 
\biggr]
</math>
   </td>
   </td>
</tr>
</tr>
Line 1,237: Line 1,246:
<tr>
<tr>
   <td align="right">
   <td align="right">
&nbsp;
<math>~\Rightarrow~~~ \biggl[ \frac{2\mathfrak{A}\mathfrak{B}}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial x_i}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,244: Line 1,253:
   <td align="left">
   <td align="left">
<math>~
<math>~
- 2x (cq^2y^2 - bp^2z^2)^2 \, ;
m \mathfrak{B}\cdot \frac{\partial \mathfrak{A}}{\partial x_i}
-  
n \mathfrak{A}\cdot  \frac{\partial \mathfrak{B}}{\partial x_i} \, .
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
Then we have, for example,
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~ \biggl[ \frac{2\mathfrak{A}\mathfrak{B}}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial y}</math>
<math>~ \frac{1}{2z}\biggl[ \frac{2\mathfrak{A}\mathfrak{B}}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial z}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,257: Line 1,272:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~- 2y \biggl[
<math>~
(ap^2z^2 + cx^2)^2
m \mathfrak{B} \biggl[ p^4 \biggr]
- 4acx^2 p^2 z^2
-  
\biggr]  
n \mathfrak{A}\biggl[ (a^2 y^2 + b^2x^2)\biggr]
</math>
</math>
   </td>
   </td>
Line 1,274: Line 1,289:
   <td align="left">
   <td align="left">
<math>~
<math>~
- 2y(ap^2z^2 - cx^2)^2 \, .
mp^4 [a^2(yz)^2 + b^2(xz)^2 + c^2(xy)^2]
-  
n (x^2 + q^4y^2 + p^4z^2)(a^2 y^2 + b^2x^2)
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
<table border="1" align="center" cellpadding="10" width="60%"><tr><td align="left">
<div align="center">'''Summary'''</div>
Given,
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\lambda_3</math>
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~\equiv</math>
<math>~=</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~
<math>~
\mathfrak{A}^{1 / 2} \mathfrak{B}^{-1 / 2}
mp^4 [a^2(yz)^2 + b^2(xz)^2 + c^2(xy)^2]
=
-
\biggl[ \frac{ (x^2 + q^4y^2 + p^4z^2) }{ a^2(yz)^2 + b^2(xz)^2 + c^2(xy)^2 } \biggr]^{1 / 2}
n [(x^2 + q^4y^2 + p^4z^2)a^2 y^2 + (x^2 + q^4y^2 + p^4z^2)b^2x^2]
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
the three relevant partial derivatives are:
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~ \biggl[ \frac{\mathfrak{A}\mathfrak{B}}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial x}</math>
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,314: Line 1,321:
   <td align="left">
   <td align="left">
<math>~
<math>~
- x (cq^2y^2 - bp^2z^2)^2 \, ,
(m-n)a^2p^4(yz)^2
+ (m-n)b^2p^4(xz)^2
+ (xy)^2[mc^2p^4 - na^2 - nb^2q^4]
- n a^2 q^4y^4 - nb^2x^4
</math>
</math>
   </td>
   </td>
Line 1,321: Line 1,331:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~ \biggl[ \frac{\mathfrak{A}\mathfrak{B}}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial y}</math>
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,328: Line 1,338:
   <td align="left">
   <td align="left">
<math>~
<math>~
- y(ap^2z^2 - cx^2)^2 \, ,
(m-n)p^4[ a^2(yz)^2 + b^2(xz)^2 ]
+ (xy)^2[mc^2p^4 - n(a^2 + b^2q^4)]
- n [ (aq^2y^2 \pm bx^2)^2 \mp 2abq^2(xy)^2] \, .
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
Choosing the ''inferior'' sign then enforcing  the above-derived <font color="red">One-Two Perpendicular Constraint</font> by setting, <math>~(a + bq^2) = -cp^2</math>, gives,
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~ \biggl[ \frac{\mathfrak{A}\mathfrak{B}}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial z}</math>
<math>~ \frac{1}{2z}\biggl[ \frac{2\mathfrak{A}\mathfrak{B}}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial z}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,342: Line 1,359:
   <td align="left">
   <td align="left">
<math>~
<math>~
-z (aq^2y^2 - bx^2)^2 \, .
(m-n)p^4[ a^2(yz)^2 + b^2(xz)^2 ]
+ (xy)^2[mc^2p^4 - n(a^2 + b^2q^4 + 2abq^2)]
- n (aq^2y^2 - bx^2)^2
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
</td></tr></table>
====Scale Factor====
Hence, the associated scale factor is,
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~h_3^{-2}</math>
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~\equiv</math>
<math>~=</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~
<math>~
\biggl( \frac{\partial \lambda_3}{\partial x} \biggr)^2
(m-n)p^4[ a^2(yz)^2 + b^2(xz)^2 ]
+ \biggl( \frac{\partial \lambda_3}{\partial y} \biggr)^2
+ (xy)^2[mc^2p^4 - n(-c p^2 )^2]
+ \biggl( \frac{\partial \lambda_3}{\partial z} \biggr)^2
- n (aq^2y^2 - bx^2)^2
</math>
</math>
   </td>
   </td>
Line 1,372: Line 1,384:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~</math>
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,379: Line 1,391:
   <td align="left">
   <td align="left">
<math>~
<math>~
\biggl[ \frac{\lambda_3}{\mathfrak{A}\mathfrak{B}} \biggr]^2
(m-n)p^4[ a^2(yz)^2 + b^2(xz)^2 + c^2(xy)^2 ]
\biggl\{
- n (bx^2 - aq^2y^2 )^2
\biggl[ - x (cq^2y^2 - bp^2z^2)^2 \biggr]^2
+ \biggl[ - y(ap^2z^2 - cx^2)^2 \biggr]^2
+ \biggl[ -z (aq^2y^2 - bx^2)^2 \biggr]^2
\biggr\}
</math>
</math>
   </td>
   </td>
Line 1,391: Line 1,399:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~</math>
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,398: Line 1,406:
   <td align="left">
   <td align="left">
<math>~
<math>~
\biggl[ \frac{\lambda_3}{\mathfrak{A}\mathfrak{B}} \biggr]^2
(m-n)p^4\mathfrak{B}
\biggl\{
- n (bx^2 - aq^2y^2 )^2  
x^2 (cq^2y^2 - bp^2z^2)^4
+ y^2 (ap^2z^2 - cx^2)^4
+ z^2 (aq^2y^2 - bx^2)^4
\biggr\}
</math>
</math>
   </td>
   </td>
Line 1,410: Line 1,414:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\Rightarrow ~~~h_3</math>
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,417: Line 1,421:
   <td align="left">
   <td align="left">
<math>~
<math>~
\biggl[ \frac{\mathfrak{A}\mathfrak{B}}{\lambda_3} \biggr]\frac{1}{\mathfrak{C}} \, ,
m p^4\mathfrak{B} -n [p^4\mathfrak{B}+ (bx^2 - aq^2y^2 )^2 ] \, .
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
</table>
where,
Reflecting back on the first line of the "example" derivation, we recognize that,
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\mathfrak{C}</math>
<math>~p^4\mathfrak{B}+ (bx^2 - aq^2y^2 )^2</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~\equiv</math>
<math>~=</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~
<math>~
\biggl[
\mathfrak{A} (a^2 y^2 + b^2x^2)
x^2 (cq^2y^2 - bp^2z^2)^4
</math>
+ y^2 (ap^2z^2 - cx^2)^4
+ z^2 (aq^2y^2 - bx^2)^4
\biggr]^{1 / 2} \, .
</math>
   </td>
   </td>
</tr>
</tr>
</table>
====Direction Cosines and Unit Vector====
And the associated triplet of direction cosines is:
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\gamma_{31} \equiv h_3 \biggl( \frac{\partial \lambda_3}{\partial x} \biggr)</math>
<math>~\Rightarrow ~~~(bx^2 - aq^2y^2 )^2</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,457: Line 1,452:
   <td align="left">
   <td align="left">
<math>~
<math>~
- x (cq^2y^2 - bp^2z^2)^2\biggl[ \frac{1}{\mathfrak{C}} \biggr] \, ,
\mathfrak{A} (a^2 y^2 + b^2x^2)
-p^4\mathfrak{B}
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
</td></tr></table>
----
Similarly, we find,
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\gamma_{32} \equiv h_3 \biggl( \frac{\partial \lambda_3}{\partial y} \biggr)</math>
<math>~ \biggl[ \frac{2\mathfrak{A}\mathfrak{B}}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial x}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,470: Line 1,477:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~
<math>~2x \biggl[
- y(ap^2z^2 - cx^2)^2 \biggl[ \frac{1}{\mathfrak{C}} \biggr] \, ,
y^2z^2(a^2 - q^4b^2 - c^2p^4)
-
c^2 q^4y^4
-
b^2p^4z^4
\biggr]  
</math>
</math>
   </td>
   </td>
Line 1,478: Line 1,490:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~ \gamma_{33} \equiv h_3 \biggl( \frac{\partial \lambda_3}{\partial y} \biggr)</math>
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,484: Line 1,496:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~
<math>~2x \biggl[
-z (aq^2y^2 - bx^2)^2 \biggl[ \frac{1}{\mathfrak{C}} \biggr] \, .
y^2z^2(a^2 - q^4b^2 - c^2p^4) 
-  
(cq^2y^2 \pm bp^2z^2)^2 \pm 2bcq^2y^2p^2z^2
\biggr]  
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
This means that, for our particular ''guess'' of the 3<sup>rd</sup> coordinate, the relevant unit vector is,
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~[\hat{e}_3]_\mathrm{guess}</math>
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,501: Line 1,513:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\frac{1}{\mathfrak{C}} \biggl\{
<math>~2x \biggl[
- \hat\imath \biggl[ x (cq^2y^2 - bp^2z^2)^2 \biggr]
(yz)^2(a^2 - q^4b^2 - c^2p^4  \pm 2bcq^2p^2) 
- \hat\jmath \biggl[ y(ap^2z^2 - cx^2)^2 \biggr]
-  
- \hat{k} \biggl[ z (aq^2y^2 - bx^2)^2 \biggr]
(cq^2y^2 \pm bp^2z^2)^2
\biggr\} \, .
\biggr]  
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~2x \biggl[
(yz)^2[a^2 - (bq^2 \pm cp^2)^2 \pm 4bcq^2p^2]
-  
(cq^2y^2 \pm bp^2z^2)^2
\biggr] \, .
</math>
</math>
   </td>
   </td>
Line 1,511: Line 1,540:
</table>
</table>


===Contrast===
The unit vector resulting (just derived) from our ''guess'' of the third-coordinate expression should be compared with [[#needed|the ''needed'' unit vector as described above]], namely,
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~[\hat{e}_3]_\mathrm{needed}</math>
<math>~ \biggl[ \frac{2\mathfrak{A}\mathfrak{B}}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial y}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~=</math>
<math>~=</math>
   </td>
   </td>
  <td align="left">
  <td align="left">
<math>~\mathfrak{A}^{-1 / 2} \mathfrak{B}^{-1 / 2} \biggl\{
<math>~2y \biggl[
\hat\imath \biggl[ (cq^2y^2)  - (b p^2z^2) \biggr]x
x^2z^2 ( b^2q^4 -a^2 - c^2p^4 )
+
-
\hat\jmath \biggl[ (ap^2z^2) - (cx^2) \biggr]y
a^2 p^4z^4
+
-
\hat{k} \biggl[ (bx^2) - (aq^2y^2) \biggr]z
c^2x^4
\biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~2y \biggl[
x^2z^2 ( b^2q^4 -a^2 - c^2p^4 )
-
(ap^2z^2 \pm cx^2)^2 \pm 2acx^2p^2z^2
\biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~2y \biggl[
x^2z^2 ( b^2q^4 -a^2 - c^2p^4 \pm 2acp^2 )
-
(ap^2z^2 \pm cx^2)^2
\biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~2y \biggl[
(xz)^2 [ b^2q^4 -(a\pm cp^2)^2  \pm 4acp^2 ]
-
(ap^2z^2 \pm cx^2)^2
\biggr] \, .
</math>
  </td>
</tr>
</table>
 
So, if we again choose the ''superior'' sign throughout these expression, the above-derived <font color="red">One-Two Perpendicular Constraint</font> can be satisfied: &nbsp; In the first by setting, <math>~(bq^2 + cp^2) = - a</math>; and in the second by setting, <math>~(a + cp^2) = - bq^2</math>.  The expressions then become, respectively,
 
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~ \biggl[ \frac{2\mathfrak{A}\mathfrak{B}}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial x}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- 2x \biggl[
(cq^2y^2 + bp^2z^2)^2
- 4bcq^2 y^2 p^2 z^2 
\biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- 2x (cq^2y^2 - bp^2z^2)^2 \, ;
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~ \biggl[ \frac{2\mathfrak{A}\mathfrak{B}}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial y}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~- 2y \biggl[
(ap^2z^2 + cx^2)^2
- 4acx^2 p^2 z^2
\biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- 2y(ap^2z^2 - cx^2)^2 \, .
</math>
  </td>
</tr>
</table>
 
<table border="1" align="center" cellpadding="10" width="60%"><tr><td align="left">
<div align="center">'''Summary'''</div>
Given,
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\lambda_3</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~
\mathfrak{A}^{1 / 2} \mathfrak{B}^{-1 / 2}
=
\biggl[ \frac{ (x^2 + q^4y^2 + p^4z^2) }{ a^2(yz)^2 + b^2(xz)^2 + c^2(xy)^2 } \biggr]^{1 / 2}
</math>
  </td>
</tr>
</table>
the three relevant partial derivatives are:
 
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~ \biggl[ \frac{\mathfrak{A}\mathfrak{B}}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial x}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- x (cq^2y^2 - bp^2z^2)^2 \, ,
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~ \biggl[ \frac{\mathfrak{A}\mathfrak{B}}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial y}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- y(ap^2z^2 - cx^2)^2 \, ,
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~ \biggl[ \frac{\mathfrak{A}\mathfrak{B}}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial z}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
-z (aq^2y^2 - bx^2)^2 \, .
</math>
  </td>
</tr>
</table>
 
</td></tr></table>
 
====Scale Factor====
Hence, the associated scale factor is,
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~h_3^{-2}</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~
\biggl( \frac{\partial \lambda_3}{\partial x} \biggr)^2
+ \biggl( \frac{\partial \lambda_3}{\partial y} \biggr)^2
+ \biggl( \frac{\partial \lambda_3}{\partial z} \biggr)^2
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl[ \frac{\lambda_3}{\mathfrak{A}\mathfrak{B}} \biggr]^2
\biggl\{
\biggl[ - x (cq^2y^2 - bp^2z^2)^2 \biggr]^2
+ \biggl[ - y(ap^2z^2 - cx^2)^2 \biggr]^2
+ \biggl[ -z (aq^2y^2 - bx^2)^2 \biggr]^2
\biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl[ \frac{\lambda_3}{\mathfrak{A}\mathfrak{B}} \biggr]^2
\biggl\{
x^2 (cq^2y^2 - bp^2z^2)^4
+ y^2 (ap^2z^2 - cx^2)^4
+ z^2 (aq^2y^2 - bx^2)^4
\biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\Rightarrow ~~~h_3</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl[ \frac{\mathfrak{A}\mathfrak{B}}{\lambda_3} \biggr]\frac{1}{\mathfrak{C}} \, ,
</math>
  </td>
</tr>
</table>
where,
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\mathfrak{C}</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~
\biggl[
x^2 (cq^2y^2 - bp^2z^2)^4
+ y^2 (ap^2z^2 - cx^2)^4
+ z^2 (aq^2y^2 - bx^2)^4
\biggr]^{1 / 2} \, .
</math>
  </td>
</tr>
</table>
 
====Direction Cosines and Unit Vector====
And the associated triplet of direction cosines is:
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\gamma_{31} \equiv h_3 \biggl( \frac{\partial \lambda_3}{\partial x} \biggr)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- x (cq^2y^2 - bp^2z^2)^2\biggl[ \frac{1}{\mathfrak{C}} \biggr] \, ,
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\gamma_{32} \equiv h_3 \biggl( \frac{\partial \lambda_3}{\partial y} \biggr)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- y(ap^2z^2 - cx^2)^2 \biggl[ \frac{1}{\mathfrak{C}} \biggr] \, ,
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~ \gamma_{33} \equiv h_3 \biggl( \frac{\partial \lambda_3}{\partial y} \biggr)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
-z (aq^2y^2 - bx^2)^2 \biggl[ \frac{1}{\mathfrak{C}} \biggr] \, .
</math>
  </td>
</tr>
</table>
This means that, for our particular ''guess'' of the 3<sup>rd</sup> coordinate, the relevant unit vector is,
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~[\hat{e}_3]_\mathrm{guess}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{1}{\mathfrak{C}} \biggl\{
- \hat\imath \biggl[ x (cq^2y^2 - bp^2z^2)^2 \biggr]
- \hat\jmath \biggl[ y(ap^2z^2 - cx^2)^2 \biggr]
- \hat{k} \biggl[ z (aq^2y^2 - bx^2)^2 \biggr]
\biggr\} \, .
\biggr\} \, .
</math>
</math>
Line 1,535: Line 1,909:
</tr>
</tr>
</table>
</table>
===Contrast===
The unit vector resulting (just derived) from our ''guess'' of the third-coordinate expression should be compared with [[#needed|the ''needed'' unit vector as described above]], namely,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~[\hat{e}_3]_\mathrm{needed}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
<td align="left">
<math>~\mathfrak{A}^{-1 / 2} \mathfrak{B}^{-1 / 2} \biggl\{
\hat\imath \biggl[ x(cq^2y^2  - b p^2z^2) \biggr]
+
\hat\jmath \biggl[ y(ap^2z^2 - cx^2) \biggr]
+
\hat{k} \biggl[ z(bx^2 - aq^2y^2) \biggr]
\biggr\} \, .
</math>
  </td>
</tr>
</table>
At first glance, apart from the difference in signs, the three terms inside the curly braces appear to be identical in these two separate unit-vector expressions.  But they are not!  Relative to the ''needed'' expression, key components of each term are '''squared''' in the ''guessed'' expression.  Very close &hellip; but no cigar!
<table border="1" cellpadding="10" align="center" width="80%"><tr><td align="left">
<div align="center">'''ASIDE'''</div>
Note that, <math>~[\hat{e}_3]_\mathrm{needed} \cdot [\hat{e}_3]_\mathrm{needed} = 1</math> implies that,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\mathfrak{A} \mathfrak{B} = \biggl[ \frac{(abc)\mathfrak{L}}{\ell_{3D}} \biggr]^2</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl[ x(cq^2y^2  - b p^2z^2) \biggr]^2
+ \biggl[ y(ap^2z^2 - cx^2) \biggr]^2
+ \biggl[ z(bx^2 - aq^2y^2) \biggr]^2 \, .
</math>
  </td>
</tr>
</table>
But we also know that (see, for example, immediately below),
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\mathfrak{A} \mathfrak{B}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
(x^2 + q^4y^2 + p^4z^2)[a^2(yz)^2 + b^2(xz)^2 + c^2(xy)^2] \, .
</math>
  </td>
</tr>
</table>
</td></tr></table>
What about the overall leading coefficient?  That is, does <math>~\mathfrak{A}\mathfrak{B} = \mathfrak{C}^2</math>&nbsp;&nbsp;? &nbsp;Well, given that,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\mathfrak{A} = \ell_{3D}^{-2}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~(x^2 + q^4y^2 + p^4z^2)</math>
  </td>
<td align="center">&nbsp; &nbsp; &nbsp; and, &nbsp; &nbsp; &nbsp; </td>
  <td align="right">
<math>~\mathfrak{B} = (abc)^2\mathfrak{L}^2</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
[a^2(yz)^2 + b^2(xz)^2 + c^2(xy)^2] \, ,
</math>
  </td>
</tr>
</table>
we have,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\mathfrak{A} \mathfrak{B}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
(x^2 + q^4y^2 + p^4z^2)[a^2(yz)^2 + b^2(xz)^2 + c^2(xy)^2]
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
x^2 [a^2(yz)^2 + b^2(xz)^2 + c^2(xy)^2]
+ q^4y^2 [a^2(yz)^2 + b^2(xz)^2 + c^2(xy)^2]
+ p^4z^2[a^2(yz)^2 + b^2(xz)^2 + c^2(xy)^2]
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~x^2y^2z^2[a^2 + b^2q^4 +c^2p^4]
+ x^4 [b^2 z^2 + c^2 y^2]
+ q^4y^4 [a^2 z^2  + c^2 x^2]
+ p^4z^4[a^2 y^2 + b^2 x^2]
</math>
  </td>
</tr>
</table>
On the other hand,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\mathfrak{C}^2</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~
x^2 (cq^2y^2 - bp^2z^2)^4
+ y^2 (ap^2z^2 - cx^2)^4
+ z^2 (aq^2y^2 - bx^2)^4
\, .
</math>
  </td>
</tr>
</table>
===Dot With 1<sup>st</sup> Unit Vector===
Is <math>~[\hat{e}_3]_\mathrm{guess}</math> orthogonal to <math>~\hat{e}_1</math>?  Let's take their dot product to see; note that, for simplicity, we will flip the sign on <math>~[\hat{e}_3]_\mathrm{guess}</math>.
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~-\hat{e}_1 \cdot [\hat{e}_3]_\mathrm{guess} \biggl[ \frac{\mathfrak{C}}{\ell_{3D}} \biggr]</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~ \biggl\{ 
\hat\imath (x)  + \hat\jmath (q^2y ) + \hat{k} (p^2 z)
\biggl\} \cdot
\biggl\{
\hat\imath \biggl[ x (cq^2y^2 - bp^2z^2)^2 \biggr]
+ \hat\jmath \biggl[ y(ap^2z^2 - cx^2)^2 \biggr]
+ \hat{k} \biggl[ z (aq^2y^2 - bx^2)^2 \biggr]
\biggr\}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~ 
x^2 (cq^2y^2 - bp^2z^2)^2
+ q^2y^2(ap^2z^2 - cx^2)^2
+ p^2z^2 (aq^2y^2 - bx^2)^2
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~ 
x^2 (c^2q^4y^4 - 2cq^2y^2 bp^2z^2 + b^2p^4z^4)
+ q^2y^2(a^2p^4z^4 - 2acx^2p^2z^2 + c^2x^4)
+ p^2z^2 (a^2q^4y^4 - 2aq^2y^2 bx^2 + b^2x^4)
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~  -2x^2 y^2 z^2[cq^2 bp^2 + aq^2cp^2 + aq^2 bp^2 ]
+ x^2 (c^2q^4y^4 + b^2p^4z^4)
+ q^2y^2(a^2p^4z^4 + c^2x^4)
+ p^2z^2 (a^2q^4y^4 + b^2x^4) \, .
</math>
  </td>
</tr>
</table>
It does not appear as though the RHS of this expression can be zero for all values of the Cartesian coordinates, (x, y, z).  Hence <math>~[\hat{e}_3]_\mathrm{guess}</math> is not orthogonal to <math>~\hat{e}_1</math>.


=See Also=
=See Also=

Latest revision as of 20:07, 16 March 2021

Concentric Ellipsoidal (T12) Coordinates

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Background

Building on our general introduction to Direction Cosines in the context of orthogonal curvilinear coordinate systems, and on our previous development of T3 (concentric oblate-spheroidal) and T5 (concentric elliptic) coordinate systems, here we explore the creation of a concentric ellipsoidal (T8) coordinate system. This is motivated by our desire to construct a fully analytically prescribable model of a nonuniform-density ellipsoidal configuration that is an analog to Riemann S-Type ellipsoids.

Note that, in a separate but closely related discussion, we made attempts to define this coordinate system, numbering the trials up through "T7." In this "T7" effort, we were able to define a set of three, mutually orthogonal unit vectors that should work to define a fully three-dimensional, concentric ellipsoidal coordinate system. But we were unable to figure out what coordinate function, <math>~\lambda_3(x, y, z)</math>, was associated with the third unit vector. In addition, we found the <math>~\lambda_2</math> coordinate to be rather strange in that it was not oriented in a manner that resembled the classic spherical coordinate system. Here we begin by redefining the <math>~\lambda_2</math> coordinate such that its associated <math>~\hat{e}_3</math> unit vector lies parallel to the x-y plane.

The 1st coordinate and its associated unit vector are as follows:

<math>~\lambda_1</math>

<math>~\equiv</math>

<math>~ (x^2 + q^2 y^2 + p^2 z^2)^{1 / 2} \, ; </math>

<math>~\hat{e}_1</math>

<math>~=</math>

<math>~ \ell_{3D} \biggl[ \hat\imath (x) + \hat\jmath (q^2y ) + \hat{k} (p^2 z) \biggr] \, , </math>

where,

<math>~\ell_{3D}</math>

<math>~\equiv</math>

<math>~ (x^2 + q^4y^2 + p^4 z^2)^{- 1 / 2} \, . </math>

Generalized Prescription for 2nd Coordinate

Default

Let's adopt the following generalized prescription for the 2nd coordinate:

<math>~\lambda_2</math>

<math>~\equiv</math>

<math>~ x^a y^b z^c \, , </math>

in which case,

<math>~\hat{e}_2</math>

<math>~=</math>

<math>~ \frac{1}{\mathfrak{L}} \biggl[ \hat\imath \biggl(\frac{yz}{bc}\biggr) + \hat\jmath \biggl(\frac{xz}{ac}\biggr) + \hat{k} \biggl(\frac{xy}{ab}\biggr) \biggr] \, , </math>

where,

<math>~\mathfrak{L}^2</math>

<math>~\equiv</math>

<math>~ \frac{1}{a^2b^2c^2} \biggl[ a^2(yz)^2 + b^2(xz)^2 + c^2(xy)^2 \biggr] \, . </math>

Now, to ensure that <math>~\hat{e}_2</math> is perpendicular to <math>~\hat{e}_1</math>, we need,

<math>~\hat{e}_1 \cdot \hat{e}_2</math>

<math>~=</math>

<math>~0</math>

<math>~\Rightarrow~~~ 0</math>

<math>~=</math>

<math>~ \frac{\ell_{3D}}{\mathfrak{L}} \biggl[ \frac{xyz}{bc} + \frac{q^2xyz}{ac} + \frac{p^2xyz}{ab} \biggr] = \frac{\ell_{3D} (xyz)}{\mathfrak{L}(abc)} \biggl[ a + q^2b + p^2 c \biggr] </math>

<math>~\Rightarrow~~~ 0</math>

<math>~=</math>

<math>~ \biggl[ a + q^2b + p^2 c \biggr]\, . </math>

Henceforth, we will refer to this algebraic relation as the "One-Two Perpendicular Constraint."

Arctangent

Instead, let's try,

<math>~\lambda_2</math>

<math>~\equiv</math>

<math>~ \tan^{-1} [x^a y^b z^c] \, . </math>

Then,

<math>~\frac{\partial \lambda_2}{\partial x_i}</math>

<math>~=</math>

<math>~ \biggl[ \frac{1}{1+\tan^2\lambda_2} \biggr] \frac{\partial }{\partial x_i} \biggl[ x^a y^b z^c \biggr] = \cos^2\lambda_2 \cdot \frac{\partial }{\partial x_i} \biggl[ x^a y^b z^c \biggr] \, ; </math>

that is,

<math>~\frac{\partial \lambda_2}{\partial x}</math>

<math>~=</math>

<math>~ \cos^2\lambda_2 \cdot \biggl[ x^a y^b z^c \biggr] \frac{a}{x} = \cos^2\lambda_2 \cdot \biggl[ \tan\lambda_2 \biggr] \frac{a}{x} = \sin\lambda_2 \cos\lambda_2 \biggl( \frac{a}{x} \biggr) \, , </math>

<math>~\frac{\partial \lambda_2}{\partial y}</math>

<math>~=</math>

<math>~ \sin\lambda_2 \cos\lambda_2 \biggl( \frac{b}{y} \biggr) \, , </math>

<math>~\frac{\partial \lambda_2}{\partial z}</math>

<math>~=</math>

<math>~ \sin\lambda_2 \cos\lambda_2 \biggl( \frac{c}{z} \biggr) \ . </math>

Hence,

<math>~h_2^{-2}</math>

<math>~=</math>

<math>~ \sin^2\lambda_2 \cos^2\lambda_2 \biggl[ \frac{a^2}{x^2} + \frac{b^2}{y^2} + \frac{c^2}{z^2} \biggr] = \frac{\sin^2\lambda_2 \cos^2\lambda_2}{(xyz)^2} \biggl[ a^2(yz)^2 + b^2(xz)^2 + c^2(xy)^2 \biggr] </math>

<math>~\Rightarrow ~~~ h_2</math>

<math>~=</math>

<math>~ \frac{1}{\sin\lambda_2 \cos\lambda_2} \biggl[ \frac{xyz}{ \mathfrak{L} (abc)} \biggr] \, . </math>

And the associated unit vector is,

<math>~\hat{e}_2</math>

<math>~=</math>

<math>~ \frac{1}{\mathfrak{L}} \biggl[ \hat\imath \biggl(\frac{yz}{bc}\biggr) + \hat\jmath \biggl(\frac{xz}{ac}\biggr) + \hat{k} \biggl(\frac{xy}{ab}\biggr) \biggr] \, , </math>

which is the same as our default situation.

Necessary 3rd Coordinate

The unit vector associated with the 3rd coordinate is obtained from the cross product of the first two unit vectors. That is,

<math>~\hat{e}_3</math>

<math>~=</math>

<math>~\hat{e}_1 \times \hat{e}_2</math>

 

<math>~=</math>

<math>~ \hat\imath \biggl[ e_{1y} e_{2z} - e_{1z} e_{2y} \biggr] + \hat\jmath \biggl[ e_{1z}e_{2x} - e_{1x}e_{2z} \biggr] + \hat{k} \biggl[ e_{1x}e_{2y} - e_{1y}e_{2x} \biggr] </math>

 

<math>~=</math>

<math>~\frac{\ell_{3D}}{\mathfrak{L}} \biggl\{ \hat\imath \biggl[ (q^2y) \biggl( \frac{xy}{ab} \biggr) - (p^2z) \biggl( \frac{xz}{ac} \biggr) \biggr] + \hat\jmath \biggl[ (p^2z) \biggl( \frac{yz}{bc} \biggr) - (x)\biggl( \frac{xy}{ab} \biggr) \biggr] + \hat{k} \biggl[ (x) \biggl( \frac{xz}{ac} \biggr) - (q^2y) \biggl( \frac{yz}{bc} \biggr) \biggr] \biggr\} </math>

 

<math>~=</math>

<math>~\frac{\ell_{3D}}{\mathfrak{L}(abc)} \biggl\{ \hat\imath \biggl[ (cq^2y^2) - (b p^2z^2) \biggr]x + \hat\jmath \biggl[ (ap^2z^2) - (cx^2) \biggr]y + \hat{k} \biggl[ (bx^2) - (aq^2y^2) \biggr]z \biggr\} </math>

Old Examples

T6 Coordinates

In the set that we have elsewhere referenced as T6 coordinates, we chose: a = - 1, b = q-2, c = 0. We note, first, that this set of parameter values satisfies the above-defined One-Two Perpendicular Constraint. In this case, our generalized prescription for the 2nd coordinate generates a unit vector of the form,

<math>~\hat{e}_2</math>

<math>~=</math>

<math>~ \frac{1}{\mathfrak{L}_{T6} (abc)} \biggl[ \hat\imath (ayz) + \hat\jmath (bxz) + \hat{k} (cxy) \biggr] = \frac{z}{q^2 \mathfrak{L}_{T6} (abc)} \biggl[ -\hat\imath (q^2y) + \hat\jmath (x) \biggr] </math>

 

<math>~=</math>

<math>~ \biggl[ -\hat\imath (q^2y) + \hat\jmath (x) \biggr] \ell_q \, , </math>

where,

<math>~\ell_q^{-2} \equiv \biggl[ \frac{q^4\mathfrak{L}_{T6}^2(abc)^2}{z^2}\biggr]</math>

<math>~=</math>

<math>~ \frac{q^4}{z^2}\biggl[ (yz)^2 + b^2(xz)^2 \biggr] = \biggl[ x^2 + q^4y^2 \biggr] \, . </math>

And it implies a unit vector for the 3rd coordinate of the form,

<math>~\hat{e}_3</math>

<math>~=</math>

<math>~\frac{\ell_{3D}}{\mathfrak{L}_{T6} (abc)} \biggl\{ \hat\imath \biggl[ (cq^2y^2) - (b p^2z^2) \biggr]x + \hat\jmath \biggl[ (ap^2z^2) - (cx^2) \biggr]y + \hat{k} \biggl[ (bx^2) - (aq^2y^2) \biggr]z \biggr\} </math>

 

<math>~=</math>

<math>~\ell_{3D}\biggl( \frac{\ell_q q^2}{z} \biggr) \biggl\{ -\hat\imath \biggl[ \frac{p^2z^2}{q^2}\biggr] x - \hat\jmath \biggl[ p^2z^2 \biggr]y + \hat{k} \biggl[ \frac{x^2}{q^2} + q^2y^2 \biggr]z \biggr\} </math>

 

<math>~=</math>

<math>~\ell_q \ell_{3D} \biggl\{ -\hat\imath (x p^2z ) - \hat\jmath (q^2y p^2z) + \hat{k} (x^2 + q^4 y^2) \biggr\} \, . </math>

T10 Coordinates

In the set that we have elsewhere referenced as T10 coordinates, we chose: a = 1, b = q-2, c = - 2p-2. We note, first, that this set of parameter values satisfies the above-defined One-Two Perpendicular Constraint. In this case, our generalized prescription for the 2nd coordinate generates a unit vector of the form,

<math>~\hat{e}_2</math>

<math>~=</math>

<math>~ \frac{1}{\mathfrak{L}_{T10} (abc)} \biggl[ \hat\imath (ayz) + \hat\jmath (bxz) + \hat{k} (cxy) \biggr] = \frac{1}{q^2 p^2 \mathfrak{L}_{T10} (abc)} \biggl[ \hat\imath (q^2y p^2z) + \hat\jmath ( x p^2 z ) - \hat{k} ( 2xq^2y) \biggr] </math>

where,

<math>~(abc)^2\mathfrak{L}^2_{T10}</math>

<math>~\equiv</math>

<math>~ \biggl[ a^2(yz)^2 + b^2(xz)^2 + c^2(xy)^2 \biggr] =

\biggl[  

y^2z^2 + \frac{x^2 z^2}{q^4} + \frac{4x^2 y^2}{p^4} \biggr] </math>

<math>~\Rightarrow~~~\mathcal{D}^2 \equiv q^4p^4(abc)^2\mathfrak{L}^2_{T10}</math>

<math>~=</math>

<math>~

\biggl[  

q^4y^2 p^4z^2 + x^2 p^4z^2 + 4x^2 q^4y^2 \biggr] \, . </math>


And it implies a unit vector for the 3rd coordinate of the form,

<math>~\hat{e}_3</math>

<math>~=</math>

<math>~\frac{\ell_{3D}}{\mathcal{D}} \biggl\{ \hat\imath \biggl[ (cq^2y^2) - (b p^2z^2) \biggr]x + \hat\jmath \biggl[ (ap^2z^2) - (cx^2) \biggr]y + \hat{k} \biggl[ (bx^2) - (aq^2y^2) \biggr]z \biggr\} q^2 p^2 </math>

 

<math>~=</math>

<math>~\frac{\ell_{3D}}{\mathcal{D}} \biggl\{ - \hat\imath \biggl[ 2q^4y^2 + p^4z^2 \biggr]x + \hat\jmath \biggl[ p^4z^2 + 2x^2 \biggr]q^2y + \hat{k} \biggl[ x^2 - q^4y^2 \biggr]p^2z \biggr\} \, . </math>

Develop 3rd-Coordinate Profile

Setup

Reflecting back on an earlier exploration, let's define the two polynomials,

<math>~\mathfrak{A} \equiv \ell_{3D}^{-2}</math>

<math>~=</math>

<math>~(x^2 + q^4y^2 + p^4z^2) \, ,</math>

<math>~\mathfrak{B} \equiv [\mathfrak{L}(abc)]^2</math>

<math>~=</math>

<math>~ [a^2(yz)^2 + b^2(xz)^2 + c^2(xy)^2] \, . </math>


<math>~\frac{\partial \mathfrak{A}}{\partial x}</math>

<math>~=</math>

<math>~2x \, ,</math>

<math>~\frac{\partial \mathfrak{A}}{\partial y}</math>

<math>~=</math>

<math>~2q^4 y \, ,</math>

<math>~\frac{\partial \mathfrak{A}}{\partial z}</math>

<math>~=</math>

<math>~2p^4 z \, ;</math>

<math>~\frac{\partial \mathfrak{B}}{\partial x}</math>

<math>~=</math>

<math>~2x(b^2z^2 + c^2y^2) \, ,</math>

<math>~\frac{\partial \mathfrak{B}}{\partial y}</math>

<math>~=</math>

<math>~2y(a^2 z^2 + c^2x^2) \, ,</math>

<math>~\frac{\partial \mathfrak{B}}{\partial z}</math>

<math>~=</math>

<math>~2z(a^2 y^2 + b^2x^2) \, .</math>

Then the 3rd unit vector may be written as,

<math>~[\hat{e}_3]_\mathrm{needed}</math>

<math>~=</math>

<math>~\mathfrak{A}^{-1 / 2} \mathfrak{B}^{-1 / 2} \biggl\{ \hat\imath \biggl[ (cq^2y^2) - (b p^2z^2) \biggr]x + \hat\jmath \biggl[ (ap^2z^2) - (cx^2) \biggr]y + \hat{k} \biggl[ (bx^2) - (aq^2y^2) \biggr]z \biggr\} \, . </math>

Guess Third Coordinate Expression

Let's see what unit vector results if we define,

<math>~\lambda_3</math>

<math>~\equiv</math>

<math>~\mathfrak{A}^{1 / 2} \mathfrak{B}^{-1 / 2} \, .</math>

Partial Derivatives

<math>~\frac{\partial \lambda_3}{\partial x_i}</math>

<math>~=</math>

<math>~ \biggl[ \frac{1}{2} \mathfrak{A}^{-1 / 2} \mathfrak{B}^{-1 / 2}\biggr] \frac{\partial \mathfrak{A}}{\partial x_i} - \biggl[ \frac{1}{2} \mathfrak{A}^{1 / 2} \mathfrak{B}^{- 3 / 2} \biggr] \frac{\partial \mathfrak{B}}{\partial x_i} </math>

<math>~\Rightarrow~~~ \biggl[ \frac{2\mathfrak{A}\mathfrak{B}}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial x_i}</math>

<math>~=</math>

<math>~ \mathfrak{B}\cdot \frac{\partial \mathfrak{A}}{\partial x_i} - \mathfrak{A}\cdot \frac{\partial \mathfrak{B}}{\partial x_i} \, . </math>

First, note that,

<math>~ \biggl[ \frac{2\mathfrak{A}\mathfrak{B}}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial x}</math>

<math>~=</math>

<math>~ \mathfrak{B} \biggl[ 2x \biggr] - \mathfrak{A}\biggl[ 2x (b^2z^2 + c^2 y^2)\biggr] </math>

 

<math>~=</math>

<math>~2x \biggl[ a^2(yz)^2 + b^2(xz)^2 + c^2(xy)^2 - (x^2 + q^4y^2 + p^4z^2)(b^2z^2 + c^2 y^2) \biggr] </math>

 

<math>~=</math>

<math>~2x \biggl[ a^2(yz)^2 + b^2(xz)^2 + c^2(xy)^2 - x^2 (b^2z^2 + c^2 y^2) - q^4y^2 (b^2z^2 + c^2 y^2) - p^4z^2(b^2z^2 + c^2 y^2)

\biggr] </math>

 

<math>~=</math>

<math>~2x \biggl\{ (yz)^2[a^2 - q^4b^2 - c^2p^4] + (xz)^2[b^2 - b^2] + (xy)^2 [c^2 - c^2] - c^2 q^4y^4 - b^2p^4z^4 \biggr\} </math>

 

<math>~=</math>

<math>~2x \biggl[ y^2z^2(a^2 - q^4b^2 - c^2p^4) - c^2 q^4y^4 - b^2p^4z^4 \biggr] \, ; </math>

<math>~ \biggl[ \frac{2\mathfrak{A}\mathfrak{B}}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial y}</math>

<math>~=</math>

<math>~ \mathfrak{B} \biggl[ 2q^4y \biggr] - \mathfrak{A}\biggl[ 2y(a^2 z^2 + c^2x^2) \biggr] </math>

 

<math>~=</math>

<math>~2y \biggl[ q^4[a^2(yz)^2 + b^2(xz)^2 + c^2(xy)^2] - (a^2 z^2 + c^2x^2) (x^2 + q^4y^2 + p^4z^2) \biggr] </math>

 

<math>~=</math>

<math>~2y \biggl[ a^2q^4(yz)^2 + b^2q^4(xz)^2 + c^2q^4(xy)^2 - a^2 z^2 (x^2 + q^4y^2 + p^4z^2) - c^2x^2 (x^2 + q^4y^2 + p^4z^2) \biggr] </math>

 

<math>~=</math>

<math>~2y \biggl\{ (yz)^2 \biggl[ a^2q^4 - a^2q^4\biggr] + (xz)^2\biggl[ b^2q^4 -a^2 - c^2p^4\biggr] + (xy)^2 \biggl[ c^2q^4 - c^2q^4 \biggr] - a^2 p^4z^4 - c^2x^4 \biggr\} </math>

 

<math>~=</math>

<math>~2y \biggl[ x^2z^2 ( b^2q^4 -a^2 - c^2p^4 ) - a^2 p^4z^4 - c^2x^4 \biggr] \, ; </math>

<math>~ \biggl[ \frac{2\mathfrak{A}\mathfrak{B}}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial z}</math>

<math>~=</math>

<math>~ \mathfrak{B} \biggl[ 2p^4z \biggr] - \mathfrak{A}\biggl[ 2z(a^2 y^2 + b^2x^2)\biggr] </math>

 

<math>~=</math>

<math>~2z \biggl[ p^4[a^2(yz)^2 + b^2(xz)^2 + c^2(xy)^2] - (a^2 y^2 + b^2x^2)(x^2 + q^4y^2 + p^4z^2) \biggr] </math>

 

<math>~=</math>

<math>~2z \biggl[ a^2p^4(yz)^2 + b^2p^4(xz)^2 + c^2p^4(xy)^2 - a^2 y^2 (x^2 + q^4y^2 + p^4z^2) - b^2x^2(x^2 + q^4y^2 + p^4z^2) \biggr] </math>

 

<math>~=</math>

<math>~2z \biggl\{ (yz)^2 \biggl[ a^2p^4 - a^2p^4 \biggr] + (xz)^2 \biggl[ b^2p^4 - b^2p^4 \biggr] + (xy)^2 \biggl[c^2p^4 - a^2 - b^2q^4 \biggr] - a^2 q^4y^4 - b^2x^4 \biggr\} </math>

 

<math>~=</math>

<math>~2z \biggl[

(xy)^2 ( c^2p^4 - a^2 - b^2q^4 )

- a^2 q^4y^4 - b^2x^4 \biggr] \, . </math>

After completing a few squares, this last expression may be rewritten as …

<math>~ \biggl[ \frac{2\mathfrak{A}\mathfrak{B}}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial z}</math>

<math>~=</math>

<math>~2z \biggl[

(xy)^2 ( c^2p^4 - a^2 - b^2q^4 )

- a^2 q^4y^4 - b^2x^4 \biggr] </math>

 

<math>~=</math>

<math>~2z \biggl[

(xy)^2 ( c^2p^4 - a^2 - b^2q^4 )

\pm 2abq^2(xy)^2 - (aq^2y^2 \pm bx^2)^2 \biggr] </math>

 

<math>~=</math>

<math>~2z \biggl[

(xy)^2 ( c^2p^4 - a^2 - b^2q^4 

\pm 2abq^2) - (aq^2y^2 \pm bx^2)^2 \biggr] </math>

 

<math>~=</math>

<math>~2z \biggl[

(xy)^2 [ c^2p^4 -(a \pm bq^2)^2

\pm 4abq^2] - (aq^2y^2 \pm bx^2)^2 \biggr] \, . </math>

Now, if we choose the superior sign throughout this expression, the above-derived One-Two Perpendicular Constraint can be satisfied by setting, <math>~(a + bq^2) = -cp^2</math>. The expression then becomes,

<math>~ \biggl[ \frac{2\mathfrak{A}\mathfrak{B}}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial z}</math>

<math>~=</math>

<math>~-2z \biggl[ (aq^2y^2 + bx^2)^2 - 4abq^2 (xy)^2 \biggr] </math>

 

<math>~=</math>

<math>~ -2z (aq^2y^2 - bx^2)^2 \, . </math>




Alternatively, suppose

<math>~\lambda_3</math>

<math>~\equiv</math>

<math>~\mathfrak{A}^{m / 2} \mathfrak{B}^{-n/ 2} </math>

<math>~\Rightarrow~~~ \biggl[ \frac{2\mathfrak{A}\mathfrak{B}}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial x_i}</math>

<math>~=</math>

<math>~ m \mathfrak{B}\cdot \frac{\partial \mathfrak{A}}{\partial x_i} - n \mathfrak{A}\cdot \frac{\partial \mathfrak{B}}{\partial x_i} \, . </math>

Then we have, for example,

<math>~ \frac{1}{2z}\biggl[ \frac{2\mathfrak{A}\mathfrak{B}}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial z}</math>

<math>~=</math>

<math>~ m \mathfrak{B} \biggl[ p^4 \biggr] - n \mathfrak{A}\biggl[ (a^2 y^2 + b^2x^2)\biggr] </math>

 

<math>~=</math>

<math>~ mp^4 [a^2(yz)^2 + b^2(xz)^2 + c^2(xy)^2] - n (x^2 + q^4y^2 + p^4z^2)(a^2 y^2 + b^2x^2) </math>

 

<math>~=</math>

<math>~ mp^4 [a^2(yz)^2 + b^2(xz)^2 + c^2(xy)^2] - n [(x^2 + q^4y^2 + p^4z^2)a^2 y^2 + (x^2 + q^4y^2 + p^4z^2)b^2x^2] </math>

 

<math>~=</math>

<math>~ (m-n)a^2p^4(yz)^2 + (m-n)b^2p^4(xz)^2 + (xy)^2[mc^2p^4 - na^2 - nb^2q^4] - n a^2 q^4y^4 - nb^2x^4 </math>

 

<math>~=</math>

<math>~ (m-n)p^4[ a^2(yz)^2 + b^2(xz)^2 ] + (xy)^2[mc^2p^4 - n(a^2 + b^2q^4)] - n [ (aq^2y^2 \pm bx^2)^2 \mp 2abq^2(xy)^2] \, . </math>

Choosing the inferior sign then enforcing the above-derived One-Two Perpendicular Constraint by setting, <math>~(a + bq^2) = -cp^2</math>, gives,

<math>~ \frac{1}{2z}\biggl[ \frac{2\mathfrak{A}\mathfrak{B}}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial z}</math>

<math>~=</math>

<math>~ (m-n)p^4[ a^2(yz)^2 + b^2(xz)^2 ] + (xy)^2[mc^2p^4 - n(a^2 + b^2q^4 + 2abq^2)] - n (aq^2y^2 - bx^2)^2 </math>

 

<math>~=</math>

<math>~ (m-n)p^4[ a^2(yz)^2 + b^2(xz)^2 ] + (xy)^2[mc^2p^4 - n(-c p^2 )^2] - n (aq^2y^2 - bx^2)^2 </math>

 

<math>~=</math>

<math>~ (m-n)p^4[ a^2(yz)^2 + b^2(xz)^2 + c^2(xy)^2 ] - n (bx^2 - aq^2y^2 )^2 </math>

 

<math>~=</math>

<math>~ (m-n)p^4\mathfrak{B} - n (bx^2 - aq^2y^2 )^2 </math>

 

<math>~=</math>

<math>~ m p^4\mathfrak{B} -n [p^4\mathfrak{B}+ (bx^2 - aq^2y^2 )^2 ] \, . </math>

Reflecting back on the first line of the "example" derivation, we recognize that,

<math>~p^4\mathfrak{B}+ (bx^2 - aq^2y^2 )^2</math>

<math>~=</math>

<math>~ \mathfrak{A} (a^2 y^2 + b^2x^2) </math>

<math>~\Rightarrow ~~~(bx^2 - aq^2y^2 )^2</math>

<math>~=</math>

<math>~ \mathfrak{A} (a^2 y^2 + b^2x^2) -p^4\mathfrak{B} </math>




Similarly, we find,

<math>~ \biggl[ \frac{2\mathfrak{A}\mathfrak{B}}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial x}</math>

<math>~=</math>

<math>~2x \biggl[ y^2z^2(a^2 - q^4b^2 - c^2p^4) - c^2 q^4y^4 - b^2p^4z^4 \biggr] </math>

 

<math>~=</math>

<math>~2x \biggl[ y^2z^2(a^2 - q^4b^2 - c^2p^4) - (cq^2y^2 \pm bp^2z^2)^2 \pm 2bcq^2y^2p^2z^2 \biggr] </math>

 

<math>~=</math>

<math>~2x \biggl[ (yz)^2(a^2 - q^4b^2 - c^2p^4 \pm 2bcq^2p^2) - (cq^2y^2 \pm bp^2z^2)^2 \biggr] </math>

 

<math>~=</math>

<math>~2x \biggl[ (yz)^2[a^2 - (bq^2 \pm cp^2)^2 \pm 4bcq^2p^2] - (cq^2y^2 \pm bp^2z^2)^2 \biggr] \, . </math>

<math>~ \biggl[ \frac{2\mathfrak{A}\mathfrak{B}}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial y}</math>

<math>~=</math>

<math>~2y \biggl[ x^2z^2 ( b^2q^4 -a^2 - c^2p^4 ) - a^2 p^4z^4 - c^2x^4 \biggr] </math>

 

<math>~=</math>

<math>~2y \biggl[ x^2z^2 ( b^2q^4 -a^2 - c^2p^4 ) - (ap^2z^2 \pm cx^2)^2 \pm 2acx^2p^2z^2 \biggr] </math>

 

<math>~=</math>

<math>~2y \biggl[ x^2z^2 ( b^2q^4 -a^2 - c^2p^4 \pm 2acp^2 ) - (ap^2z^2 \pm cx^2)^2 \biggr] </math>

 

<math>~=</math>

<math>~2y \biggl[ (xz)^2 [ b^2q^4 -(a\pm cp^2)^2 \pm 4acp^2 ] - (ap^2z^2 \pm cx^2)^2 \biggr] \, . </math>

So, if we again choose the superior sign throughout these expression, the above-derived One-Two Perpendicular Constraint can be satisfied:   In the first by setting, <math>~(bq^2 + cp^2) = - a</math>; and in the second by setting, <math>~(a + cp^2) = - bq^2</math>. The expressions then become, respectively,

<math>~ \biggl[ \frac{2\mathfrak{A}\mathfrak{B}}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial x}</math>

<math>~=</math>

<math>~ - 2x \biggl[ (cq^2y^2 + bp^2z^2)^2 - 4bcq^2 y^2 p^2 z^2 \biggr] </math>

 

<math>~=</math>

<math>~ - 2x (cq^2y^2 - bp^2z^2)^2 \, ; </math>

<math>~ \biggl[ \frac{2\mathfrak{A}\mathfrak{B}}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial y}</math>

<math>~=</math>

<math>~- 2y \biggl[ (ap^2z^2 + cx^2)^2 - 4acx^2 p^2 z^2 \biggr] </math>

 

<math>~=</math>

<math>~ - 2y(ap^2z^2 - cx^2)^2 \, . </math>

Summary

Given,

<math>~\lambda_3</math>

<math>~\equiv</math>

<math>~ \mathfrak{A}^{1 / 2} \mathfrak{B}^{-1 / 2} = \biggl[ \frac{ (x^2 + q^4y^2 + p^4z^2) }{ a^2(yz)^2 + b^2(xz)^2 + c^2(xy)^2 } \biggr]^{1 / 2} </math>

the three relevant partial derivatives are:

<math>~ \biggl[ \frac{\mathfrak{A}\mathfrak{B}}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial x}</math>

<math>~=</math>

<math>~ - x (cq^2y^2 - bp^2z^2)^2 \, , </math>

<math>~ \biggl[ \frac{\mathfrak{A}\mathfrak{B}}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial y}</math>

<math>~=</math>

<math>~ - y(ap^2z^2 - cx^2)^2 \, , </math>

<math>~ \biggl[ \frac{\mathfrak{A}\mathfrak{B}}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial z}</math>

<math>~=</math>

<math>~ -z (aq^2y^2 - bx^2)^2 \, . </math>

Scale Factor

Hence, the associated scale factor is,

<math>~h_3^{-2}</math>

<math>~\equiv</math>

<math>~ \biggl( \frac{\partial \lambda_3}{\partial x} \biggr)^2 + \biggl( \frac{\partial \lambda_3}{\partial y} \biggr)^2 + \biggl( \frac{\partial \lambda_3}{\partial z} \biggr)^2 </math>

<math>~</math>

<math>~=</math>

<math>~ \biggl[ \frac{\lambda_3}{\mathfrak{A}\mathfrak{B}} \biggr]^2 \biggl\{ \biggl[ - x (cq^2y^2 - bp^2z^2)^2 \biggr]^2 + \biggl[ - y(ap^2z^2 - cx^2)^2 \biggr]^2 + \biggl[ -z (aq^2y^2 - bx^2)^2 \biggr]^2 \biggr\} </math>

<math>~</math>

<math>~=</math>

<math>~ \biggl[ \frac{\lambda_3}{\mathfrak{A}\mathfrak{B}} \biggr]^2 \biggl\{ x^2 (cq^2y^2 - bp^2z^2)^4 + y^2 (ap^2z^2 - cx^2)^4 + z^2 (aq^2y^2 - bx^2)^4 \biggr\} </math>

<math>~\Rightarrow ~~~h_3</math>

<math>~=</math>

<math>~ \biggl[ \frac{\mathfrak{A}\mathfrak{B}}{\lambda_3} \biggr]\frac{1}{\mathfrak{C}} \, , </math>

where,

<math>~\mathfrak{C}</math>

<math>~\equiv</math>

<math>~ \biggl[ x^2 (cq^2y^2 - bp^2z^2)^4 + y^2 (ap^2z^2 - cx^2)^4 + z^2 (aq^2y^2 - bx^2)^4 \biggr]^{1 / 2} \, . </math>

Direction Cosines and Unit Vector

And the associated triplet of direction cosines is:

<math>~\gamma_{31} \equiv h_3 \biggl( \frac{\partial \lambda_3}{\partial x} \biggr)</math>

<math>~=</math>

<math>~ - x (cq^2y^2 - bp^2z^2)^2\biggl[ \frac{1}{\mathfrak{C}} \biggr] \, , </math>

<math>~\gamma_{32} \equiv h_3 \biggl( \frac{\partial \lambda_3}{\partial y} \biggr)</math>

<math>~=</math>

<math>~ - y(ap^2z^2 - cx^2)^2 \biggl[ \frac{1}{\mathfrak{C}} \biggr] \, , </math>

<math>~ \gamma_{33} \equiv h_3 \biggl( \frac{\partial \lambda_3}{\partial y} \biggr)</math>

<math>~=</math>

<math>~ -z (aq^2y^2 - bx^2)^2 \biggl[ \frac{1}{\mathfrak{C}} \biggr] \, . </math>

This means that, for our particular guess of the 3rd coordinate, the relevant unit vector is,

<math>~[\hat{e}_3]_\mathrm{guess}</math>

<math>~=</math>

<math>~\frac{1}{\mathfrak{C}} \biggl\{ - \hat\imath \biggl[ x (cq^2y^2 - bp^2z^2)^2 \biggr] - \hat\jmath \biggl[ y(ap^2z^2 - cx^2)^2 \biggr] - \hat{k} \biggl[ z (aq^2y^2 - bx^2)^2 \biggr] \biggr\} \, . </math>

Contrast

The unit vector resulting (just derived) from our guess of the third-coordinate expression should be compared with the needed unit vector as described above, namely,

<math>~[\hat{e}_3]_\mathrm{needed}</math>

<math>~=</math>

<math>~\mathfrak{A}^{-1 / 2} \mathfrak{B}^{-1 / 2} \biggl\{ \hat\imath \biggl[ x(cq^2y^2 - b p^2z^2) \biggr] + \hat\jmath \biggl[ y(ap^2z^2 - cx^2) \biggr] + \hat{k} \biggl[ z(bx^2 - aq^2y^2) \biggr] \biggr\} \, . </math>

At first glance, apart from the difference in signs, the three terms inside the curly braces appear to be identical in these two separate unit-vector expressions. But they are not! Relative to the needed expression, key components of each term are squared in the guessed expression. Very close … but no cigar!

ASIDE

Note that, <math>~[\hat{e}_3]_\mathrm{needed} \cdot [\hat{e}_3]_\mathrm{needed} = 1</math> implies that,

<math>~\mathfrak{A} \mathfrak{B} = \biggl[ \frac{(abc)\mathfrak{L}}{\ell_{3D}} \biggr]^2</math>

<math>~=</math>

<math>~ \biggl[ x(cq^2y^2 - b p^2z^2) \biggr]^2 + \biggl[ y(ap^2z^2 - cx^2) \biggr]^2 + \biggl[ z(bx^2 - aq^2y^2) \biggr]^2 \, . </math>

But we also know that (see, for example, immediately below),

<math>~\mathfrak{A} \mathfrak{B}</math>

<math>~=</math>

<math>~ (x^2 + q^4y^2 + p^4z^2)[a^2(yz)^2 + b^2(xz)^2 + c^2(xy)^2] \, . </math>

What about the overall leading coefficient? That is, does <math>~\mathfrak{A}\mathfrak{B} = \mathfrak{C}^2</math>  ?  Well, given that,

<math>~\mathfrak{A} = \ell_{3D}^{-2}</math>

<math>~=</math>

<math>~(x^2 + q^4y^2 + p^4z^2)</math>

      and,      

<math>~\mathfrak{B} = (abc)^2\mathfrak{L}^2</math>

<math>~=</math>

<math>~ [a^2(yz)^2 + b^2(xz)^2 + c^2(xy)^2] \, , </math>

we have,

<math>~\mathfrak{A} \mathfrak{B}</math>

<math>~=</math>

<math>~ (x^2 + q^4y^2 + p^4z^2)[a^2(yz)^2 + b^2(xz)^2 + c^2(xy)^2] </math>

 

<math>~=</math>

<math>~ x^2 [a^2(yz)^2 + b^2(xz)^2 + c^2(xy)^2] + q^4y^2 [a^2(yz)^2 + b^2(xz)^2 + c^2(xy)^2] + p^4z^2[a^2(yz)^2 + b^2(xz)^2 + c^2(xy)^2] </math>

 

<math>~=</math>

<math>~x^2y^2z^2[a^2 + b^2q^4 +c^2p^4] + x^4 [b^2 z^2 + c^2 y^2] + q^4y^4 [a^2 z^2 + c^2 x^2] + p^4z^4[a^2 y^2 + b^2 x^2] </math>

On the other hand,

<math>~\mathfrak{C}^2</math>

<math>~\equiv</math>

<math>~ x^2 (cq^2y^2 - bp^2z^2)^4 + y^2 (ap^2z^2 - cx^2)^4 + z^2 (aq^2y^2 - bx^2)^4

\, .

</math>

Dot With 1st Unit Vector

Is <math>~[\hat{e}_3]_\mathrm{guess}</math> orthogonal to <math>~\hat{e}_1</math>? Let's take their dot product to see; note that, for simplicity, we will flip the sign on <math>~[\hat{e}_3]_\mathrm{guess}</math>.

<math>~-\hat{e}_1 \cdot [\hat{e}_3]_\mathrm{guess} \biggl[ \frac{\mathfrak{C}}{\ell_{3D}} \biggr]</math>

<math>~=</math>

<math>~ \biggl\{ \hat\imath (x) + \hat\jmath (q^2y ) + \hat{k} (p^2 z) \biggl\} \cdot \biggl\{ \hat\imath \biggl[ x (cq^2y^2 - bp^2z^2)^2 \biggr] + \hat\jmath \biggl[ y(ap^2z^2 - cx^2)^2 \biggr] + \hat{k} \biggl[ z (aq^2y^2 - bx^2)^2 \biggr] \biggr\} </math>

 

<math>~=</math>

<math>~ x^2 (cq^2y^2 - bp^2z^2)^2 + q^2y^2(ap^2z^2 - cx^2)^2 + p^2z^2 (aq^2y^2 - bx^2)^2 </math>

 

<math>~=</math>

<math>~ x^2 (c^2q^4y^4 - 2cq^2y^2 bp^2z^2 + b^2p^4z^4) + q^2y^2(a^2p^4z^4 - 2acx^2p^2z^2 + c^2x^4) + p^2z^2 (a^2q^4y^4 - 2aq^2y^2 bx^2 + b^2x^4) </math>

 

<math>~=</math>

<math>~ -2x^2 y^2 z^2[cq^2 bp^2 + aq^2cp^2 + aq^2 bp^2 ] + x^2 (c^2q^4y^4 + b^2p^4z^4) + q^2y^2(a^2p^4z^4 + c^2x^4) + p^2z^2 (a^2q^4y^4 + b^2x^4) \, . </math>

It does not appear as though the RHS of this expression can be zero for all values of the Cartesian coordinates, (x, y, z). Hence <math>~[\hat{e}_3]_\mathrm{guess}</math> is not orthogonal to <math>~\hat{e}_1</math>.

See Also


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation