VisTrails Home

User:Tohline/Appendix/Ramblings/ConcentricEllipsodalCoordinates

From VisTrailsWiki

(Difference between revisions)
Jump to: navigation, search
(Concentric Ellipsoidal (T6) Coordinates)
(Concentric Ellipsoidal (T6) Coordinates)
Line 110: Line 110:
   </td>
   </td>
</tr>
</tr>
-
</table>
 
 +
<tr>
 +
  <td align="right">
 +
&nbsp;
 +
  </td>
 +
  <td align="center">
 +
<math>~=</math>
 +
  </td>
 +
  <td align="left">
 +
<math>~
 +
\biggl[ \biggl( \frac{x}{\lambda_1} \biggr)^2
 +
+ \biggl( \frac{q^2y}{\lambda_1} \biggr)^2
 +
+ \biggl(\frac{p^2 z}{\lambda_1} \biggr)^2 \biggr]^{1 / 2}
 +
</math>
 +
  </td>
 +
</tr>
 +
<tr>
 +
  <td align="right">
 +
&nbsp;
 +
  </td>
 +
  <td align="center">
 +
<math>~=</math>
 +
  </td>
 +
  <td align="left">
 +
<math>~
 +
\frac{1}{\lambda_1 \ell_{3D}}
 +
</math>
 +
  </td>
 +
</tr>
 +
</table>
 +
where,
 +
<table border="0" cellpadding="5" align="center">
-
The properly normalized
+
<tr>
 +
  <td align="right">
 +
<math>~\ell_{3D}</math>
 +
  </td>
 +
  <td align="center">
 +
<math>~\equiv</math>
 +
  </td>
 +
  <td align="left">
 +
<math>~\biggl[ x^2 + q^4y^2 + p^4 z^2 \biggr]^{- 1 / 2} \, .</math>
 +
  </td>
 +
</tr>
 +
</table>
-
Next, we appreciate that the vector that is normal to theWhat is the expression for the unit vector normal to the surface at <math>~(x, y, z)</math> when written in terms of Cartesian unit vectors?
+
It is therefore clear that the ''properly normalized'' normal unit vector that should be associated with any <math>~\lambda_1</math> = constant ellipsoidal surface is,
 +
<table border="0" cellpadding="5" align="center">
-
Well, to start with we know that <math>~\lambda_1^2</math> is constant across the entire surface, so at any point on this specified surface we must find,
+
<tr>
 +
  <td align="right">
 +
<math>~\hat{e}_1 </math>
 +
  </td>
 +
  <td align="center">
 +
<math>~\equiv</math>
 +
  </td>
 +
  <td align="left">
 +
<math>~
 +
\frac{ \bold\hat{n} }{ [ \bold{\hat{n}} \cdot \bold{\hat{n}} ]^{1 / 2} }
 +
=
 +
\hat\imath (x \ell_{3D}) + \hat\jmath (q^2y \ell_{3D}) + \hat\jmath (p^2 z \ell_{3D}) \, .
 +
</math>
 +
  </td>
 +
</tr>
 +
</table>
 +
From our [[User:Tohline/Appendix/Ramblings/DirectionCosines#Scale_Factors|accompanying discussion of direction cosines]], it is clear, as well, that the scale factor associated with the <math>~\lambda_1</math> coordinate is,
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
<tr>
<tr>
   <td align="right">
   <td align="right">
-
<math>~0</math>
+
<math>~h_1^2</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 129: Line 187:
   </td>
   </td>
   <td align="left">
   <td align="left">
-
<math>~2x dx + 2q^2y dy + 2p^2z dz \, .</math>
+
<math>~\lambda_1^2 \ell_{3D}^2 \, .</math>
 +
  </td>
 +
</tr>
 +
</table>
 +
We can also fill in the top line of our direction-cosines table, namely,
 +
 
 +
 
 +
<table border="1" cellpadding="8" align="center" width="60%">
 +
<tr>
 +
  <td align="center" colspan="4">
 +
'''Direction Cosines for T6 Coordinates'''
 +
<br />
 +
<math>~\gamma_{ni} = h_n \biggl( \frac{\partial \lambda_n}{\partial x_i}\biggr)</math>
 +
  </td>
 +
</tr>
 +
<tr>
 +
  <td align="center" width="10%"><math>~n</math></td>
 +
  <td align="center" colspan="3"><math>~i = x, y, z</math>
 +
</tr>
 +
<tr>
 +
  <td align="center"><math>~1</math></td>
 +
  <td align="center">&nbsp;<br />
 +
<math>~x\ell_{3D}</math><br />&nbsp;
 +
  <td align="center"><math>~q^2 y \ell_{3D}</math>
 +
  <td align="center"><math>~p^2 z \ell_{3D}</math>
 +
</tr>
 +
<tr>
 +
  <td align="center"><math>~2</math></td>
 +
  <td align="center">
 +
&nbsp;<br />
 +
---
 +
<br />&nbsp;
 +
  <td align="center">
 +
&nbsp;<br />
 +
---
 +
<br />&nbsp;
 +
  <td align="center">
 +
&nbsp;<br />
 +
---
 +
<br />&nbsp;
 +
  </td>
 +
</tr>
 +
<tr>
 +
  <td align="center"><math>~3</math></td>
 +
  <td align="center">
 +
&nbsp;<br />
 +
---
 +
<br />&nbsp;
 +
  </td>
 +
  <td align="center">
 +
&nbsp;<br />
 +
---
 +
<br />&nbsp;
 +
  </td>
 +
  <td align="center">
 +
&nbsp;<br />
 +
---
 +
<br />&nbsp;
   </td>
   </td>
</tr>
</tr>

Revision as of 10:54, 27 October 2020

Contents

Concentric Ellipsoidal (T6) Coordinates

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Background

Building on our general introduction to Direction Cosines in the context of orthogonal curvilinear coordinate systems, and on our previous development of T3 (concentric oblate-spheroidal) and T5 (concentric elliptic) coordinate systems, here we explore the creation of a concentric ellipsoidal (T6) coordinate system. This is motivated by our desire to construct a fully analytically prescribable model of a nonuniform-density ellipsoidal configuration that is an analog to Riemann S-Type ellipsoids.

Orthogonal Coordinates

We start by defining a "radial" coordinate whose values identify various concentric ellipsoidal shells,

~\lambda_1

~\equiv

~(x^2 + q^2 y^2 + p^2 z^2)^{1 / 2} \, .

When ~\lambda_1 = a, we obtain the standard definition of an ellipsoidal surface, it being understood that, ~q^2 = a^2/b^2 and ~p^2 = a^2/c^2. (We will assume that ~a > b > c, that is, ~p^2 > q^2 > 1.)

A vector, ~\bold{\hat{n}}, that is normal to the ~\lambda_1 = constant surface is given by the gradient of the function,

~F(x, y, z)

~\equiv

~(x^2 + q^2 y^2 + p^2 z^2)^{1 / 2} - \lambda_1 \, .

In Cartesian coordinates, this means,

~\bold{\hat{n}}(x, y, z)

~=

~
\hat\imath \biggl( \frac{\partial F}{\partial x} \biggr)
+ \hat\jmath \biggl( \frac{\partial F}{\partial y} \biggr)
+ \hat{k} \biggl( \frac{\partial F}{\partial z} \biggr)

 

~=

~
\hat\imath \biggl[ x(x^2 + q^2 y^2 + p^2 z^2)^{- 1 / 2} \biggr]
+ \hat\jmath \biggl[ q^2y(x^2 + q^2 y^2 + p^2 z^2)^{- 1 / 2} \biggr]
+ \hat\jmath \biggl[ p^2 z(x^2 + q^2 y^2 + p^2 z^2)^{- 1 / 2} \biggr]

 

~=

~
\hat\imath \biggl( \frac{x}{\lambda_1} \biggr)
+ \hat\jmath \biggl( \frac{q^2y}{\lambda_1} \biggr)
+ \hat\jmath \biggl(\frac{p^2 z}{\lambda_1} \biggr) \, ,

where it is understood that this expression is only to be evaluated at points, ~(x, y, z), that lie on the selected ~\lambda_1 surface — that is, at points for which the function, ~F(x,y,z) = 0. The length of this normal vector is given by the expression,

~[ \bold{\hat{n}} \cdot \bold{\hat{n}} ]^{1 / 2}

~=

~
\biggl[ \biggl( \frac{\partial F}{\partial x} \biggr)^2 + \biggl( \frac{\partial F}{\partial y} \biggr)^2 + \biggl( \frac{\partial F}{\partial z} \biggr)^2 \biggr]^{1 / 2}

 

~=

~
\biggl[ \biggl( \frac{x}{\lambda_1} \biggr)^2
+ \biggl( \frac{q^2y}{\lambda_1} \biggr)^2
+ \biggl(\frac{p^2 z}{\lambda_1} \biggr)^2 \biggr]^{1 / 2}

 

~=

~
\frac{1}{\lambda_1 \ell_{3D}}

where,

~\ell_{3D}

~\equiv

~\biggl[ x^2 + q^4y^2 + p^4 z^2 \biggr]^{- 1 / 2} \, .

It is therefore clear that the properly normalized normal unit vector that should be associated with any ~\lambda_1 = constant ellipsoidal surface is,

~\hat{e}_1

~\equiv

~
\frac{ \bold\hat{n} }{ [ \bold{\hat{n}} \cdot \bold{\hat{n}} ]^{1 / 2} }
=
\hat\imath (x \ell_{3D}) + \hat\jmath (q^2y \ell_{3D}) + \hat\jmath (p^2 z \ell_{3D}) \, .

From our accompanying discussion of direction cosines, it is clear, as well, that the scale factor associated with the ~\lambda_1 coordinate is,

~h_1^2

~=

~\lambda_1^2 \ell_{3D}^2 \, .

We can also fill in the top line of our direction-cosines table, namely,


Direction Cosines for T6 Coordinates
~\gamma_{ni} = h_n \biggl( \frac{\partial \lambda_n}{\partial x_i}\biggr)

~n ~i = x, y, z
~1  

~x\ell_{3D}
 

~q^2 y \ell_{3D} ~p^2 z \ell_{3D}
~2

 
---
 

 
---
 

 
---
 

~3

 
---
 

 
---
 

 
---
 

See Also

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2020 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |

Personal tools