Difference between revisions of "User:Tohline/VE"

From VistrailsWiki
Jump to navigation Jump to search
(→‎Adiabatic: Correct expression for thermal energy)
(→‎Uniform-density, Uniformly Rotating Sphere: Correct error in isothermal "S" definition)
Line 70: Line 70:


===Adiabatic===
===Adiabatic===
If, upon compression or expansion, the gaseous configuration behaves adiabatically, in which case the pressure will vary with density as,
Consider the situation where, upon compression or expansion, the gaseous configuration behaves adiabatically, in which case the pressure will vary with density as,
<div align="center">
<div align="center">
<math>P = K \rho^{\gamma_g} \, ,</math>  
<math>P = K \rho^{\gamma_g} \, ,</math>  
Line 172: Line 172:


===Isothermal===
===Isothermal===
If, upon compression or expansion, the configuration remains isothermal &#8212; in which case <math>\gamma_g  =1</math> &#8212; then both the (isothermal) sound speed, <math>c_s</math>, and the total thermal energy, <math>S=(1/2)c_s^2 M</math>, are constant.  But as pointed out, for example, in Appendix A of [http://adsabs.harvard.edu/abs/1983ApJ...268..165S Stahler] (1983, ApJ, 268, 16), the total internal energy will vary according to the relation,
If, upon compression or expansion, the configuration remains isothermal &#8212; in which case <math>\gamma_g  =1</math> &#8212; then both the (isothermal) sound speed, <math>c_s</math>, and the total thermal energy, <math>S=(3/2)c_s^2 M</math>, are constant.  But as pointed out, for example, in Appendix A of [http://adsabs.harvard.edu/abs/1983ApJ...268..165S Stahler] (1983, ApJ, 268, 16), the total internal energy will vary according to the relation,


<div align="center">
<div align="center">
Line 212: Line 212:
   <td align="left">
   <td align="left">
<math>
<math>
c_s^2 M \, ,
3c_s^2 M \, ,
</math>
</math>
   </td>
   </td>

Revision as of 19:45, 13 September 2012

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Virial Equation

Free Energy Expression

Associated with any isolated, self-gravitating, gaseous configuration we can identify a total "Gibbs-like" free energy, <math>\mathfrak{G}</math>, given by the sum of the relevant contributions to the total energy of the configuration,

<math> \mathfrak{G} = W + U + T_\mathrm{rot} + P_e V + \cdots </math>

Here, we have explicitly included the gravitational potential energy, <math>W</math>, the total internal energy, <math>U</math>, the rotational kinetic energy, <math>T_\mathrm{rot}</math>, and a term that accounts for surface effects if the configuration of volume <math>V</math> is embedded in an external medium of pressure <math>P_e</math>.

Uniform-density, Uniformly Rotating Sphere

For a uniform-density, uniformly rotating, spherically symmetric configuration of mass <math>M</math> and radius <math>R</math>,

<math> W </math>

<math>=</math>

<math> - \frac{3}{5} \frac{GM^2}{R} \, , </math>

<math> T_\mathrm{rot} </math>

<math>=</math>

<math> \frac{1}{2} I \omega^2 = \frac{J^2}{2I} = \frac{5}{4} \frac{J^2}{MR^2} \, , </math>

<math> V </math>

<math>=</math>

<math> \frac{4}{3} \pi R^3 \, , </math>

where, <math>~G</math> is the gravitational constant, <math>I=(2/5)MR^2</math> is the moment of inertia, <math>\omega</math> is the angular frequency of rotation, and <math>J=I\omega</math> is the total angular momentum.

Adiabatic

Consider the situation where, upon compression or expansion, the gaseous configuration behaves adiabatically, in which case the pressure will vary with density as,

<math>P = K \rho^{\gamma_g} \, ,</math>

where, <math>K</math> specifies the specific entropy of the gas and <math>~\gamma_\mathrm{g}</math> is the ratio of specific heats. The total thermal energy is, then,

<math> S = \frac{3}{2} NkT = \frac{3}{2} \frac{\mathfrak{R}}{\mu} TM = \frac{3}{2} \frac{P}{\rho} M = \frac{3}{\gamma_g} \biggl[ \frac{1}{2} M a_s^2 \biggr] \, , </math>

and the total internal energy is,

<math> U = \frac{2}{3 (\gamma_g - 1)} S </math>

<math>=</math>

<math> \frac{M a_s^2}{\gamma_g (\gamma_g - 1)} \, , </math>

where the square of the (adiabatic) sound speed,

<math>a_s^2 \equiv \frac{\partial P}{\partial\rho} = \gamma_g \frac{P}{\rho} = \gamma_g K \rho^{\gamma_g-1} \, .</math>

Appreciating that <math>\rho = M/V</math> for the case being considered here (i.e., for a uniform-density sphere), the adiabatic free energy can be written as,

<math> \mathfrak{G} = -A\biggl( \frac{R}{R_0} \biggr)^{-1} +B\biggl( \frac{R}{R_0} \biggr)^{-3(\gamma_g-1)} + C \biggl( \frac{R}{R_0} \biggr)^{-2} + D\biggl( \frac{R}{R_0} \biggr)^3 \, , </math>

where, <math>R_0</math> is an, as yet unspecified, scale length,

<math>A</math>

<math>\equiv</math>

<math>\frac{3}{5} \frac{GM^2}{R_0} \, ,</math>

<math>B</math>

<math>\equiv</math>

<math> \biggl[ \frac{K}{(\gamma_g-1)} \biggl( \frac{3}{4\pi R_0^3} \biggr)^{\gamma_g - 1} \biggr] M^{\gamma_g} \, , </math>

<math>C</math>

<math>\equiv</math>

<math> \frac{5J^2}{4MR_0^2} \, , </math>

<math>D</math>

<math>\equiv</math>

<math> \frac{4}{3} \pi R_0^3 P_e \, . </math>

Isothermal

If, upon compression or expansion, the configuration remains isothermal — in which case <math>\gamma_g =1</math> — then both the (isothermal) sound speed, <math>c_s</math>, and the total thermal energy, <math>S=(3/2)c_s^2 M</math>, are constant. But as pointed out, for example, in Appendix A of Stahler (1983, ApJ, 268, 16), the total internal energy will vary according to the relation,

<math> U </math>

<math>=</math>

<math> \frac{2}{3} S \ln\rho \, . </math>

Again appreciating that <math>\rho = M/V</math> for the case being considered here (i.e., for a uniform-density sphere), to within an additive constant the isothermal free energy can be written as,

<math> \mathfrak{G} = -A \biggl( \frac{R}{R_0} \biggr)^{-1} - B_I \ln \biggl( \frac{R}{R_0} \biggr) + C \biggl( \frac{R}{R_0} \biggr)^{-2} + D\biggl( \frac{R}{R_0} \biggr)^3 \, , </math>

where, aside from the coefficient definitions provided above in association with the adiabatic case,

<math>B_I</math>

<math>\equiv</math>

<math> 3c_s^2 M \, , </math>

Summary

We can combine the two cases — adiabatic and isothermal — into a single expression for <math>\mathfrak{G}</math> through a strategic use of the Kroniker delta function, <math>\delta_{1\gamma_g}</math>, as follows:

<math> \mathfrak{G} = -A\biggl( \frac{R}{R_0} \biggr)^{-1} +~ (1-\delta_{1\gamma_g})B\biggl( \frac{R}{R_0} \biggr)^{-3(\gamma_g-1)} -~ \delta_{1\gamma_g} B_I \ln \biggl( \frac{R}{R_0} \biggr) +~ C \biggl( \frac{R}{R_0} \biggr)^{-2} +~ D\biggl( \frac{R}{R_0} \biggr)^3 \, , </math>

Once the pressure exerted by the external medium (<math>P_e</math>), and the configuration's mass (<math>M</math>), angular momentum (<math>J</math>), and specific entropy (via <math>K</math>) — or, in the isothermal case, sound speed (<math>c_s</math>) — have been specified, the values of all of the coefficients are known and this algebraic expression for <math>\mathfrak{G}</math> describes how the free energy of the configuration will vary with the configuration's size (<math>R</math>) for a given choice of <math>\gamma_g</math>.

Whitworth (1981)

The above presentation closely parallels Whitworth's (1981, MNRAS, 195, 967) discussion of the "global gravitational stability for one-dimensional polyropes." He introduces a "global potential function," <math>\mathfrak{u}</math>, that is the sum of three "internal conserved energy modes,"

<math> \mathfrak{u} </math>

<math> = </math>

<math> \mathfrak{g} + \mathfrak{B}_\mathrm{in} + \mathfrak{B}_\mathrm{ex} </math>

 

<math>=</math>

<math> - \frac{3}{5} \frac{GM_0^2}{R_0} \biggl(\frac{R}{R_0} \biggr)^{-1} + (1-\delta_{1\eta})\biggl[ \frac{KM_0^\eta}{(\eta - 1)} V_0^{(1-\eta)} \biggr] \biggl(\frac{R}{R_0}\biggr)^{3(1-\eta)} - \delta_{1\eta} \biggl[ 3KM_0 \ln\biggl(\frac{R}{R_0} \biggr) \biggr] + P_\mathrm{ex} V_0 \biggl( \frac{R}{R_0} \biggr)^{3} </math>

Clearly Whitworth's global potential function, <math>\mathfrak{u}</math>, is what we have referred to as the configuration's "Gibbs-like" free energy, with <math>\eta</math> being used rather than <math>\gamma_g</math> to represent the ratio of specific heats in the adiabatic case. Our expression for <math>\mathfrak{G}</math> would precisely match his expression for <math>\mathfrak{u}</math> if we chose to examine the free energy of a nonrotating configuration, that is, if we set <math>C=J=0</math>.

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation