Difference between revisions of "User:Tohline/VE"

From VistrailsWiki
Jump to navigation Jump to search
(→‎Free Energy Expression: Few wording changes & additions)
(→‎Uniform-density, Uniformly Rotating Sphere: Expand discussion of free energy)
Line 67: Line 67:
</table>
</table>
</div>  
</div>  
where, {{User:Tohline/Math/C_GravitationalConstant}} is the gravitational constant <math>I=(2/5)MR^2</math> is the moment of inertia, <math>\omega</math> is the angular frequency of rotation, and <math>J=I\omega</math> is the total angular momentum.
where, {{User:Tohline/Math/C_GravitationalConstant}} is the gravitational constant, <math>I=(2/5)MR^2</math> is the moment of inertia, <math>\omega</math> is the angular frequency of rotation, and <math>J=I\omega</math> is the total angular momentum.


===Adiabatic===
===Adiabatic===
If, upon compression or expansion, the gas behaves adiabatically, that is, the pressure varies with density as,
If, upon compression or expansion, the gaseous configuration behaves adiabatically, in which case the pressure will vary with density as,
<div align="center">
<div align="center">
<math>P = K \rho^{\gamma_g} \, ,</math>  
<math>P = K \rho^{\gamma_g} \, ,</math>  
Line 99: Line 99:
<div align="center">
<div align="center">
<math>a_s^2 \equiv \frac{\partial P}{\partial\rho} = \gamma_g \frac{P}{\rho} = \gamma_g K \rho^{\gamma_g-1} \, .</math>  
<math>a_s^2 \equiv \frac{\partial P}{\partial\rho} = \gamma_g \frac{P}{\rho} = \gamma_g K \rho^{\gamma_g-1} \, .</math>  
</div>
The Gibbs-like free energy can therefore be written as,
<div align="center">
<math>
\mathfrak{G} = -AR^{-1} +BR^{3-3\gamma_g} + C R^{-2} \, ,
</math>
</div>
where,
<div align="center">
<table border="0" cellpadding="5">
<tr>
  <td align="right">
<math>A</math>
  </td>
  <td align="center">
<math>\equiv</math>
  </td>
  <td align="left">
<math>\frac{3}{5} GM^2 \, ,</math>
  </td>
</tr>
</table>
</div>
</div>


===Isothermal===
===Isothermal===
If, upon compression or expansion, the gas remains isothermal &#8212; in which case <math>\gamma_g  =1</math> &#8212; then, both the (isothermal) sound speed, <math>c_s</math>, and the total thermal energy, <math>S=(1/2)c_s^2 M</math>, are constant.  But as pointed out, for example, in Appendix A of [http://adsabs.harvard.edu/abs/1983ApJ...268..165S Stahler] (1983, ApJ, 268, 16), the total internal energy does vary according to the relation,
If, upon compression or expansion, the configuration remains isothermal &#8212; in which case <math>\gamma_g  =1</math> &#8212; then both the (isothermal) sound speed, <math>c_s</math>, and the total thermal energy, <math>S=(1/2)c_s^2 M</math>, are constant.  But as pointed out, for example, in Appendix A of [http://adsabs.harvard.edu/abs/1983ApJ...268..165S Stahler] (1983, ApJ, 268, 16), the total internal energy will vary according to the relation,


<div align="center">
<div align="center">

Revision as of 20:18, 11 September 2012

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Virial Equation

Free Energy Expression

Associated with any isolated, self-gravitating, gaseous configuration we can identify a total "Gibbs-like" free energy, <math>\mathfrak{G}</math>, given by the sum of the relevant contributions to the total energy of the configuration,

<math> \mathfrak{G} = W + U + T_\mathrm{rot} + P_e V + \cdots </math>

Here, we have explicitly included the gravitational potential energy, <math>W</math>, the total internal energy, <math>U</math>, the rotational kinetic energy, <math>T_\mathrm{rot}</math>, and a term that accounts for surface effects if the configuration of volume <math>V</math> is embedded in an external medium of pressure <math>P_e</math>.

Uniform-density, Uniformly Rotating Sphere

For a uniform-density, uniformly rotating, spherically symmetric configuration of mass <math>M</math> and radius <math>R</math>,

<math> W </math>

<math>=</math>

<math> - \frac{3}{5} \frac{GM^2}{R} \, , </math>

<math> T_\mathrm{rot} </math>

<math>=</math>

<math> \frac{1}{2} I \omega^2 = \frac{J^2}{2I} = \frac{5}{4} \frac{J^2}{MR^2} \, , </math>

<math> V </math>

<math>=</math>

<math> \frac{4}{3} \pi R^3 \, , </math>

where, <math>~G</math> is the gravitational constant, <math>I=(2/5)MR^2</math> is the moment of inertia, <math>\omega</math> is the angular frequency of rotation, and <math>J=I\omega</math> is the total angular momentum.

Adiabatic

If, upon compression or expansion, the gaseous configuration behaves adiabatically, in which case the pressure will vary with density as,

<math>P = K \rho^{\gamma_g} \, ,</math>

where, <math>K</math> specifies the specific entropy of the gas and <math>~\gamma_\mathrm{g}</math> is the ratio of specific heats, then

<math> U = \frac{2}{3(\gamma_g - 1)} S </math>

<math>=</math>

<math> \frac{2}{3(\gamma_g - 1)} \biggl[ \frac{1}{2} a_s^2 M \biggr] \, , </math>

where <math>S</math> is the total thermal energy, and the square of the (adiabatic) sound speed,

<math>a_s^2 \equiv \frac{\partial P}{\partial\rho} = \gamma_g \frac{P}{\rho} = \gamma_g K \rho^{\gamma_g-1} \, .</math>

The Gibbs-like free energy can therefore be written as,

<math> \mathfrak{G} = -AR^{-1} +BR^{3-3\gamma_g} + C R^{-2} \, , </math>

where,

<math>A</math>

<math>\equiv</math>

<math>\frac{3}{5} GM^2 \, ,</math>

Isothermal

If, upon compression or expansion, the configuration remains isothermal — in which case <math>\gamma_g =1</math> — then both the (isothermal) sound speed, <math>c_s</math>, and the total thermal energy, <math>S=(1/2)c_s^2 M</math>, are constant. But as pointed out, for example, in Appendix A of Stahler (1983, ApJ, 268, 16), the total internal energy will vary according to the relation,

<math> U </math>

<math>=</math>

<math> \frac{2}{3} S \ln\rho \, . </math>


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation