Difference between revisions of "User:Tohline/VE"

From VistrailsWiki
Jump to navigation Jump to search
(Begin Virial Equation chapter)
 
Line 13: Line 13:
Here, we have explicitly included the gravitational potential energy, <math>W</math>, the total internal energy, <math>U</math>, the rotational kinetic energy, <math>T_\mathrm{rot}</math>, and a term that accounts for surface effects if the configuration of volume <math>V</math> is embedded in an external medium of pressure <math>P_e</math>.
Here, we have explicitly included the gravitational potential energy, <math>W</math>, the total internal energy, <math>U</math>, the rotational kinetic energy, <math>T_\mathrm{rot}</math>, and a term that accounts for surface effects if the configuration of volume <math>V</math> is embedded in an external medium of pressure <math>P_e</math>.


==Uniform-density, Polytropic Sphere==
==Uniform-density, Uniformly Rotating Sphere==
For a uniform-density, spherically symmetric configuration of mass <math>M</math> and radius <math>R</math>,  
For a uniform-density, uniformly rotating, spherically symmetric configuration of mass <math>M</math> and radius <math>R</math>,  
<div align="center">
<div align="center">
<table border="0" cellpadding="5">
<table border="0" cellpadding="5">
Line 28: Line 28:
   <td align="left">
   <td align="left">
<math>  
<math>  
- \frac{3}{5} \frac{GM^2}{R} \, ;
- \frac{3}{5} \frac{GM^2}{R} \, ,
</math>
</math>
   </td>
   </td>
Line 36: Line 36:
   <td align="right">
   <td align="right">
<math>
<math>
U = \frac{2}{3(\gamma - 1)} S
T_\mathrm{rot}
</math>
</math>
   </td>
   </td>
Line 44: Line 44:
   <td align="left">
   <td align="left">
<math>  
<math>  
\frac{2}{3(\gamma - 1)} \biggl[ \frac{1}{2} a^2 M \biggr] \, ;
\frac{1}{2} I \omega^2 = \frac{J^2}{2I} = \frac{5}{4} \frac{J^2}{MR^2} \, ,
</math>
</math>
   </td>
   </td>
Line 52: Line 52:
   <td align="right">
   <td align="right">
<math>
<math>
T_\mathrm{rot}
V
</math>
</math>
   </td>
   </td>
Line 60: Line 60:
   <td align="left">
   <td align="left">
<math>  
<math>  
\frac{1}{2} I \omega^2 = \frac{J^2}{2I} = \frac{5}{4} \frac{J^2}{MR^2} \, ;
\frac{4}{3} \pi R^3 \, ,
</math>
</math>
   </td>
   </td>
</tr>
</tr>


</table>
</div>
where, {{User:Tohline/Math/C_GravitationalConstant}} is the gravitational constant <math>I=(2/5)MR^2</math> is the moment of inertia, <math>\omega</math> is the angular frequency of rotation, and <math>J=I\omega</math> is the total angular momentum.
===Adiabatic===
If, upon compression or expansion, the gas behaves adiabatically, that is, the pressure varies with density as,
<div align="center">
<math>P = K \rho^{\gamma_g} \, ,</math>
</div>
where, <math>K</math> specifies the specific entropy of the gas and {{User:Tohline/Math/MP_AdiabaticIndex}} is the ratio of specific heats, then
<div align="center">
<table border="0" cellpadding="5">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>
<math>
V
U = \frac{2}{3(\gamma_g - 1)} S
</math>
</math>
   </td>
   </td>
Line 76: Line 89:
   <td align="left">
   <td align="left">
<math>  
<math>  
\frac{4}{3} \pi R^3 \, .
\frac{2}{3(\gamma_g - 1)} \biggl[ \frac{1}{2} a_s^2 M \biggr] \, ,
</math>
</math>
   </td>
   </td>
Line 83: Line 96:
</table>
</table>
</div>  
</div>  
where <math>S</math> is the total thermal energy, and the square of the (adiabatic) sound speed,
<div align="center">
<math>a_s^2 \equiv \frac{\partial P}{\partial\rho} = \gamma_g \frac{P}{\rho} = \gamma_g K \rho^{\gamma_g-1} \, .</math>
</div>


===Isothermal===
If, upon compression or expansion, the gas remains isothermal &#8212; in which case <math>\gamma_g  =1</math> &#8212; then, both the (isothermal) sound speed, <math>c_s</math>, and the total thermal energy, <math>S=(1/2)c_s^2 M</math>, are constant.  But as pointed out, for example, by [http://adsabs.harvard.edu/abs/1983ApJ...268..165S Stahler] (1983, ApJ, 268, 16), the total internal energy does vary according to the relation,
<div align="center">
<table border="0" cellpadding="5">
<tr>
  <td align="right">
<math>
U
</math>
  </td>
  <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>
\frac{2}{3} S \ln\rho \, .
</math>
  </td>
</tr>


</table>
</div>




{{LSU_HBook_footer}}
{{LSU_HBook_footer}}

Revision as of 02:44, 10 September 2012

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Virial Equation

Free Energy Expression

Associated with any self-gravitating, gaseous configuration we can identify a total "Gibbs-like" free energy, <math>\mathfrak{G}</math>, given by the sum of the relevant contributions to the total energy,

<math> \mathfrak{G} = W + U + T_\mathrm{rot} + P_e V + ... </math>

Here, we have explicitly included the gravitational potential energy, <math>W</math>, the total internal energy, <math>U</math>, the rotational kinetic energy, <math>T_\mathrm{rot}</math>, and a term that accounts for surface effects if the configuration of volume <math>V</math> is embedded in an external medium of pressure <math>P_e</math>.

Uniform-density, Uniformly Rotating Sphere

For a uniform-density, uniformly rotating, spherically symmetric configuration of mass <math>M</math> and radius <math>R</math>,

<math> W </math>

<math>=</math>

<math> - \frac{3}{5} \frac{GM^2}{R} \, , </math>

<math> T_\mathrm{rot} </math>

<math>=</math>

<math> \frac{1}{2} I \omega^2 = \frac{J^2}{2I} = \frac{5}{4} \frac{J^2}{MR^2} \, , </math>

<math> V </math>

<math>=</math>

<math> \frac{4}{3} \pi R^3 \, , </math>

where, <math>~G</math> is the gravitational constant <math>I=(2/5)MR^2</math> is the moment of inertia, <math>\omega</math> is the angular frequency of rotation, and <math>J=I\omega</math> is the total angular momentum.

Adiabatic

If, upon compression or expansion, the gas behaves adiabatically, that is, the pressure varies with density as,

<math>P = K \rho^{\gamma_g} \, ,</math>

where, <math>K</math> specifies the specific entropy of the gas and <math>~\gamma_\mathrm{g}</math> is the ratio of specific heats, then

<math> U = \frac{2}{3(\gamma_g - 1)} S </math>

<math>=</math>

<math> \frac{2}{3(\gamma_g - 1)} \biggl[ \frac{1}{2} a_s^2 M \biggr] \, , </math>

where <math>S</math> is the total thermal energy, and the square of the (adiabatic) sound speed,

<math>a_s^2 \equiv \frac{\partial P}{\partial\rho} = \gamma_g \frac{P}{\rho} = \gamma_g K \rho^{\gamma_g-1} \, .</math>

Isothermal

If, upon compression or expansion, the gas remains isothermal — in which case <math>\gamma_g =1</math> — then, both the (isothermal) sound speed, <math>c_s</math>, and the total thermal energy, <math>S=(1/2)c_s^2 M</math>, are constant. But as pointed out, for example, by Stahler (1983, ApJ, 268, 16), the total internal energy does vary according to the relation,

<math> U </math>

<math>=</math>

<math> \frac{2}{3} S \ln\rho \, . </math>


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation