Difference between revisions of "User:Tohline/ThreeDimensionalConfigurations/HomogeneousEllipsoids"

From VistrailsWiki
Jump to navigation Jump to search
(Create "homogeneous ellipsoids" page)
 
Line 5: Line 5:
=Properties of Homogeneous Ellipsoids=
=Properties of Homogeneous Ellipsoids=


==Strategy==
==Gravitational Potential==


As has been shown in a separate discussion (not yet typed!), the acceleration due to the gravitational attraction of a distribution of mass {{User:Tohline/Math/VAR_Density01}}<math>(\vec{x})</math> can be derived from the gradient of a scalar potential {{User:Tohline/Math/VAR_NewtonianPotential01}}<math>(\vec{x})</math> defined as follows:


<div align="center">
<math>
\Phi(\vec{x}) \equiv - \int \frac{G \rho(\vec{x}')}{|\vec{x}' - \vec{x}|} d^3 x' .
</math>
</div>


As has been explicitly demonstrated in Chapter 3 of Chandrasekhar (1987) and summarized in Table 2-2 (p. 57) of Binney &amp; Tremaine (1987), for an homogeneous ellipsoid this volume integral can be evaluated analytically in closed form.  Specifically, at an internal point or on the surface of an homogeneous ellipsoid with semi-axes <math>(x,y,z) = (a_1,a_2,a_3)</math>,


<div align="center">
<math>
\Phi(\vec{x}) = -\pi G \rho \biggl[ I_\mathrm{BT} a_1^2 - \biggl(A_1 x^2 + A_2 y^2 +A_3 z^2 \biggr) \biggr],
</math>
</div>


where,
<table align="center" border=0 cellpadding="3">
<tr>
  <td align="right">
<math>
A_i
</math>
  </td>
  <td align="center">
<math>
\equiv
</math>
  </td>
  <td align="left">
<math>
a_1 a_2 a_3 \int_0^\infty \frac{du}{\Delta (a_i^2 + u )} ,
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>
I_\mathrm{BT}
</math>
  </td>
  <td align="center">
<math>
\equiv
</math>
  </td>
  <td align="left">
<math>
\frac{a_2 a_3}{a_1} \int_0^\infty \frac{du}{\Delta} = A_1 + A_2\biggl(\frac{a_2}{a_1}\biggr)^2+ A_3\biggl(\frac{a_3}{a_1}\biggr)^2 ,
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>
\Delta
</math>
  </td>
  <td align="center">
<math>
\equiv
</math>
  </td>
  <td align="left">
<math>
\biggl[ (a_1^2 + u)(a_2^2 + u)(a_3^2 + u)  \biggr]^{1/2} .
</math>
  </td>
</tr>
</table>
As is detailed below, the integrals defining <math>A_i</math> and <math>I_\mathrm{BT}</math> can be expressed in terms of standard incomplete elliptic integrals, or in terms of more elementary functions if either <math>a_2 = a_1</math> (oblate spheroids) or <math>a_3 = a_2</math> (prolate spheroids).


=See Also=
=See Also=

Revision as of 01:50, 21 April 2010

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Properties of Homogeneous Ellipsoids

Gravitational Potential

As has been shown in a separate discussion (not yet typed!), the acceleration due to the gravitational attraction of a distribution of mass <math>~\rho</math><math>(\vec{x})</math> can be derived from the gradient of a scalar potential <math>~\Phi</math><math>(\vec{x})</math> defined as follows:

<math> \Phi(\vec{x}) \equiv - \int \frac{G \rho(\vec{x}')}{|\vec{x}' - \vec{x}|} d^3 x' . </math>

As has been explicitly demonstrated in Chapter 3 of Chandrasekhar (1987) and summarized in Table 2-2 (p. 57) of Binney & Tremaine (1987), for an homogeneous ellipsoid this volume integral can be evaluated analytically in closed form. Specifically, at an internal point or on the surface of an homogeneous ellipsoid with semi-axes <math>(x,y,z) = (a_1,a_2,a_3)</math>,

<math>

\Phi(\vec{x}) = -\pi G \rho \biggl[ I_\mathrm{BT} a_1^2 - \biggl(A_1 x^2 + A_2 y^2 +A_3 z^2 \biggr) \biggr],

</math>

where,


<math> A_i </math>

<math> \equiv </math>

<math> a_1 a_2 a_3 \int_0^\infty \frac{du}{\Delta (a_i^2 + u )} , </math>

<math> I_\mathrm{BT} </math>

<math> \equiv </math>

<math> \frac{a_2 a_3}{a_1} \int_0^\infty \frac{du}{\Delta} = A_1 + A_2\biggl(\frac{a_2}{a_1}\biggr)^2+ A_3\biggl(\frac{a_3}{a_1}\biggr)^2 , </math>

<math> \Delta </math>

<math> \equiv </math>

<math> \biggl[ (a_1^2 + u)(a_2^2 + u)(a_3^2 + u) \biggr]^{1/2} . </math>

As is detailed below, the integrals defining <math>A_i</math> and <math>I_\mathrm{BT}</math> can be expressed in terms of standard incomplete elliptic integrals, or in terms of more elementary functions if either <math>a_2 = a_1</math> (oblate spheroids) or <math>a_3 = a_2</math> (prolate spheroids).

See Also

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation