Difference between revisions of "User:Tohline/StabilityVariationalPrincipal"

From VistrailsWiki
Jump to navigation Jump to search
Line 230: Line 230:
</table>
</table>
</div>
</div>
Notice that, if <math>~(e,f,g) \rightarrow (a,b,c)</math>


 
<!-- EARLIER DERIVATION


Hence, the equilibrium radius of the marginally unstable configuration is given by the expression,
Hence, the equilibrium radius of the marginally unstable configuration is given by the expression,
Line 295: Line 296:
</table>
</table>
</div>
</div>
EARLIER DERIVATION -->


=See Also=
=See Also=


{{LSU_HBook_footer}}
{{LSU_HBook_footer}}

Revision as of 22:22, 3 June 2017


Free-Energy Stability Analysis

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Most General Case

Consider a free-energy function of the form,

<math>~\mathcal{G}</math>

<math>~=</math>

<math>~- a\chi^{-1} + b \chi^{-3/n} + c \chi^{-3/j} + \mathcal{G}_0 \, ,</math>

where, <math>~a, b, c,</math> and <math>~\mathcal{G}_0</math> are constants, and the dimensionless configuration radius,

<math>~\chi \equiv \frac{R}{R_0} \, ,</math>

is defined in terms of a characteristic length, <math>~R_0</math>, which is likely to be different for each type of problem.

Virial Equilibrium

The first variation (first derivative) of this function with respect to the configuration's radius is,

<math>~\frac{d\mathcal{G}}{d\chi}</math>

<math>~=</math>

<math>~a\chi^{-2} - \biggl(\frac{3b}{n}\biggr) \chi^{-3/n-1} - \biggl(\frac{3 c}{j}\biggr) \chi^{-3/j -1} \, .</math>

According to the virial theorem, the radius of an equilibrium configuration is obtained by setting <math>~d\mathcal{G}/d\chi = 0</math> and identifying the roots of the resulting equation. For example, identifying roots of the polynomial expression,

<math>~0</math>

<math>~=</math>

<math>~\frac{a}{3c} - \biggl(\frac{b}{nc}\biggr) \chi_\mathrm{eq}^{(n-3)/n} - \biggl(\frac{1}{j}\biggr) \chi_\mathrm{eq}^{(j-3)/j } \, .</math>

Stability

Let's rewrite the first variation of the free-energy function in terms of three coefficients <math>~(e,f,g)</math> which, in general, we will permit to have different values from the original three <math>~(a,b,c)</math>,

<math>~\mathcal{G}^'</math>

<math>~=</math>

<math>~e\chi^{-2} - \biggl(\frac{3f}{n}\biggr) \chi^{-3/n-1} - \biggl(\frac{3 g}{j}\biggr) \chi^{-3/j -1} \, .</math>

The first variation (first derivative) of this function with respect to the configuration's radius — which, in effect, represents the second variation of the free-energy function — gives,

<math>~\frac{d\mathcal{G}^'}{d\chi}</math>

<math>~=</math>

<math>~-2e\chi^{-3} + \biggl(\frac{3}{n} + 1\biggr) \biggl(\frac{3f}{n}\biggr) \chi^{-3/n-2} + \biggl(\frac{3}{j} + 1\biggr) \biggl(\frac{3 g}{j}\biggr) \chi^{-3/j -2} \, .</math>

If we evaluate this function by setting <math>~\chi = \chi_\mathrm{eq}</math>, the sign of the resulting expression should indicate stability (positive) or dynamical instability (negative); and the marginally unstable configuration is identified by the value of <math>~\chi_\mathrm{eq}</math> for which <math>~d\mathcal{G}^'/d\chi = 0</math>.

Pressure-Truncated Configurations

For pressure-truncated polytropes, we set <math>~j = -1</math> and let <math>~n</math> represent the chosen polytropic index. In this situation, then, we have,

Free-energy expression:      

<math>~\mathcal{G}</math>

<math>~=</math>

<math>~- a\chi^{-1} + b \chi^{-3/n} + c \chi^{3} + \mathcal{G}_0 \, ;</math>

Virial equlibrium:      

<math>~0</math>

<math>~=</math>

<math>~\frac{a}{3c} - \biggl(\frac{b}{nc}\biggr) \chi_\mathrm{eq}^{(n-3)/n} + \chi_\mathrm{eq}^{4 } \, ;</math>

Stability indicator:      

<math>~\frac{d\mathcal{G}^'}{d\chi}</math>

<math>~=</math>

<math>~-2e\chi^{-3} + \biggl(\frac{3}{n} + 1\biggr) \biggl(\frac{3f}{n}\biggr) \chi^{-3/n-2} + 6g \chi \, .</math>

Hence, the (critical) equilibrium radius of the marginally unstable configuration is given by the expression,

<math>~6g \chi_\mathrm{eq}^4 </math>

<math>~=</math>

<math>~2e - \biggl(\frac{3}{n} + 1\biggr) \biggl(\frac{3f}{n}\biggr) \chi_\mathrm{eq}^{(n-3)/n}</math>

 

<math>~=</math>

<math>~2e - \biggl[\frac{3f(n+3)}{n^2} \biggr] \biggl(\frac{nc}{b} \biggr)\biggl[\frac{a}{3c} + \chi_\mathrm{eq}^4 \biggr]</math>

<math>~\Rightarrow ~~~ 6g \chi_\mathrm{eq}^4 +\biggl[\frac{3f(n+3)}{n^2} \biggr] \biggl(\frac{nc}{b} \biggr)\chi_\mathrm{eq}^4 </math>

<math>~=</math>

<math>~ 2e - \biggl[\frac{3f(n+3)}{n^2} \biggr] \biggl(\frac{nc}{b} \biggr)\biggl[\frac{a}{3c} \biggr] </math>

<math>~\Rightarrow ~~~ \biggl[6g + \frac{3cf(n+3)}{nb} \biggr]\chi_\mathrm{eq}^4 </math>

<math>~=</math>

<math>~ 2e - \biggl[\frac{af(n+3)}{nb} \biggr] </math>

<math>~\Rightarrow ~~~ \chi_\mathrm{eq}^4\biggr|_\mathrm{crit} </math>

<math>~=</math>

<math>~ \biggl[\frac{2nbe -af(n+3)}{6nbg +3cf(n+3)} \biggr] \, . </math>

Notice that, if <math>~(e,f,g) \rightarrow (a,b,c)</math>


See Also

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation