Difference between revisions of "User:Tohline/SSC/Virial/PolytropesSummary"

From VistrailsWiki
Jump to navigation Jump to search
(→‎Virial Equilibrium of Adiabatic Spheres (Summary): Finished first couple of summary paragraphs)
(→‎Virial Equilibrium of Adiabatic Spheres (Summary): Begin explaining relationship to detailed force-balanced models)
Line 8: Line 8:
{{LSU_HBook_header}}
{{LSU_HBook_header}}


The variation with size of the normalized free energy, <math>~\mathfrak{G}^*</math>, of pressure-truncated adiabatic spheres is described by the following algebraic function:
==Free Energy Function and Virial Theorem==
<div align="center">
 
The variation with size of the normalized free energy, <math>~\mathfrak{G}^*</math>, of pressure-truncated adiabatic spheres is described by the following,
<div align="center" id="FreeEnergyExpression">
<font color="#770000">'''Algebraic Free-Energy Function'''</font><br />
 
<math>
<math>
\mathfrak{G}^* =  
\mathfrak{G}^* =  
Line 23: Line 27:
[[File:AdabaticBoundedSpheres_Virial.jpg|thumb|300px|Equilibrium Adiabatic Pressure-Radius Diagram]]
[[File:AdabaticBoundedSpheres_Virial.jpg|thumb|300px|Equilibrium Adiabatic Pressure-Radius Diagram]]
Equilibrium radii may also be identified through an algebraic relation that originates from the scalar virial theorem &#8212; a theorem that, itself, is derivable from the free-energy expression by setting <math>~\partial\mathfrak{G}^*/\partial\chi = 0</math>.  In our  
Equilibrium radii may also be identified through an algebraic relation that originates from the scalar virial theorem &#8212; a theorem that, itself, is derivable from the free-energy expression by setting <math>~\partial\mathfrak{G}^*/\partial\chi = 0</math>.  In our  
[[User:Tohline/SSC/Virial/Polytropes#Virial_Equilibrium_of_Adiabatic_Spheres|accompanying detailed analysis of the structure of pressure-truncated polytropes]], we use the virial theorem to show that the equilibrium radii that are identified by extrema in the free-energy function always satisfy the following relation:
[[User:Tohline/SSC/Virial/Polytropes#Virial_Equilibrium_of_Adiabatic_Spheres|accompanying detailed analysis of the structure of pressure-truncated polytropes]], we use the virial theorem to show that the equilibrium radii that are identified by extrema in the free-energy function always satisfy the following,
<div align="center">
<div align="center" id="ConciseVirial">
<font color="#770000">'''Algebraic Expression of the Virial Theorm'''</font><br />
 
<math>
<math>
\Pi_\mathrm{ad} = \frac{(\chi_\mathrm{ad}^{4-3\gamma} - 1)}{\chi_\mathrm{ad}^4} \, ,
\Pi_\mathrm{ad} = \frac{(\chi_\mathrm{ad}^{4-3\gamma} - 1)}{\chi_\mathrm{ad}^4} \, ,
Line 65: Line 71:


The curves shown in the accompanying "pressure-radius" diagram trace out this derived virial-theorem function for six different values of the adiabatic exponent, <math>~\gamma</math>, as labeled.  They show the dimensionless external pressure, <math>~\Pi_\mathrm{ad}</math>, that is required to construct a nonrotating, self-gravitating, adiabatic sphere with a dimensionless equilibrium radius <math>~\chi_\mathrm{ad}</math>.  The mathematical solution becomes unphysical wherever the pressure becomes negative.
The curves shown in the accompanying "pressure-radius" diagram trace out this derived virial-theorem function for six different values of the adiabatic exponent, <math>~\gamma</math>, as labeled.  They show the dimensionless external pressure, <math>~\Pi_\mathrm{ad}</math>, that is required to construct a nonrotating, self-gravitating, adiabatic sphere with a dimensionless equilibrium radius <math>~\chi_\mathrm{ad}</math>.  The mathematical solution becomes unphysical wherever the pressure becomes negative.
==Relationship to Detailed Force-Balanced Models==
In our [[User:Tohline/SSC/Virial/Polytropes#Virial_Equilibrium_of_Adiabatic_Spheres|accompanying detailed analysis]], we demonstrate that the expressions given above for the free-energy function and the virial theorem are correct in sufficiently strict detail that they can be used to precisely match &#8212; and assist in understanding &#8212; the equilibrium of embedded polytropes whose structures have been determined from the set of detailed force-balance equations.  In order to draw this association, it is only necessary to realize that, very broadly, the constant coefficients, <math>~\mathcal{A}</math> and <math>~\mathcal{B}</math>, in the above algebraic free-energy expression are expressible in terms of three structural form factors, <math>~\mathfrak{f}_M</math>, <math>~\mathfrak{f}_W</math>, and <math>~\mathfrak{f}_A</math>, as follows:
<div align="center">
<table border="0" cellpadding="5">
<tr>
  <td align="right">
<math>~\mathcal{A}</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>\frac{1}{5} \cdot \biggl[ \biggl( \frac{M_\mathrm{limit}}{M_\mathrm{tot}} \biggr) \frac{1}{\mathfrak{f}_M} \biggr]^2 \cdot \mathfrak{f}_W \, ,</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\mathcal{B}</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>
\frac{4\pi}{3}
\biggl[ \frac{3}{4\pi} \biggl( \frac{M_\mathrm{limit}}{M_\mathrm{tot}}\biggr)  \frac{1}{\mathfrak{f}_M} \biggr]_\mathrm{eq}^{\gamma}
\cdot \mathfrak{f}_A
= \frac{4\pi}{3}
\biggl[ \biggl( \frac{P_c}{P_\mathrm{norm}} \biggr)\chi^{3\gamma} \biggr]_\mathrm{eq}
\cdot \mathfrak{f}_A \, ;
</math>
  </td>
</tr>
</table>
</div>
and that, specifically in the context of spherical polytropes, we can write,
<div align="center">
<table border="1" align="center" cellpadding="5">
<tr><th align="center" colspan="1">
Structural Form Factors for <font color="red">Pressure-Truncated</font> Polytropes
</th></tr>
<tr><td align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\tilde\mathfrak{f}_M</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~ \biggl[ - \frac{3\Theta^'}{\xi} \biggr]_{\tilde\xi} </math>
  </td>
</tr>
<tr>
  <td align="right">
<math>\tilde\mathfrak{f}_W </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{3^2\cdot 5}{5-n} \biggl[ \frac{\Theta^'}{\xi} \biggr]^2_{\tilde\xi} </math>
  </td>
</tr>
<tr>
  <td align="right">
<math>\tilde\mathfrak{f}_A  </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>
\frac{3(n+1) }{(5-n)} ~\biggl[ \Theta^' \biggr]^2_{\tilde\xi}  + \tilde\Theta^{n+1}
</math>
  </td>
</tr>
</table>
</td>
</tr>
</table>
</div>
If we plug these nontrivial expressions for <math>~\mathcal{A}</math> and <math>~\mathcal{B}</math> into the righthand sides of the above equations for <math>~\Pi_\mathrm{ad}</math> and <math>~\chi_\mathrm{ad}</math> and, simultaneously, use Hoerdt's detailed force-balanced expressions for <math>~r_a</math> and <math>~p_a</math> to specify, respectively, <math>~\chi_\mathrm{eq}</math> and <math>~P_e/P_\mathrm{norm}</math> in these same equations, we have shown that the resulting algebraic relations for <math>~\Pi_\mathrm{ad}</math> and <math>~\chi_\mathrm{ad}</math> satisfy the above algebraic virial theorem relation.


{{LSU_HBook_footer}}
{{LSU_HBook_footer}}

Revision as of 02:18, 10 October 2014


Virial Equilibrium of Adiabatic Spheres (Summary)

The summary presented here has been drawn from our accompanying detailed analysis of the structure of pressure-truncated polytropes.

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Free Energy Function and Virial Theorem

The variation with size of the normalized free energy, <math>~\mathfrak{G}^*</math>, of pressure-truncated adiabatic spheres is described by the following,

Algebraic Free-Energy Function

<math> \mathfrak{G}^* = -3\mathcal{A} \chi^{-1} +~ \frac{1}{(\gamma - 1)} \mathcal{B} \chi^{3-3\gamma} +~ \mathcal{D}\chi^3 \, . </math>

In this expression, the size of the configuration is set by the value of the dimensionless radius, <math>~\chi \equiv R/R_\mathrm{norm}</math>; as is clarified, below, the values of the coefficients, <math>~\mathcal{A}</math> and <math>~\mathcal{B}</math>, characterize the relative importance, respectively, of the gravitational potential energy and the internal thermal energy of the configuration; <math>~\gamma</math> is the exponent (from the adopted equation of state) that identifies the adiabat along which the configuration heats or cools upon expansion or contraction; and the relative importance of the imposed external pressure is expressed through the free-energy expression's third constant coefficient, specifically,

<math>~\mathcal{D} \equiv \frac{4\pi}{3} \biggl( \frac{P_e}{P_\mathrm{norm}} \biggr) \, .</math>

When examining a range of physically reasonable configuration sizes for a given choice of the constants <math>~(n, \mathcal{A}, \mathcal{B}, \mathcal{D})</math>, a plot of <math>~\mathfrak{G}^*</math> versus <math>~\chi</math> will often reveal one or two extrema. The location of each extrema identifies an equilibrium radius, <math>~\chi_\mathrm{eq} \equiv R_\mathrm{eq}/R_\mathrm{norm}</math>.

Equilibrium Adiabatic Pressure-Radius Diagram

Equilibrium radii may also be identified through an algebraic relation that originates from the scalar virial theorem — a theorem that, itself, is derivable from the free-energy expression by setting <math>~\partial\mathfrak{G}^*/\partial\chi = 0</math>. In our accompanying detailed analysis of the structure of pressure-truncated polytropes, we use the virial theorem to show that the equilibrium radii that are identified by extrema in the free-energy function always satisfy the following,

Algebraic Expression of the Virial Theorm

<math> \Pi_\mathrm{ad} = \frac{(\chi_\mathrm{ad}^{4-3\gamma} - 1)}{\chi_\mathrm{ad}^4} \, , </math>

where, after setting <math>~\gamma = (n+1)/n</math>,

<math>~\Pi_\mathrm{ad}</math>

<math>~=</math>

<math> ~\mathcal{D} \biggl[ \frac{\mathcal{A}^{3(n+1)}}{\mathcal{B}^{4n}} \biggr]^{1/(n-3)} \, , </math>         and,

<math>~\chi_\mathrm{ad}</math>

<math>~=</math>

<math> ~\chi_\mathrm{eq} \biggl[ \frac{\mathcal{B}}{\mathcal{A}} \biggr]^{n/(n-3)} \, . </math>

The curves shown in the accompanying "pressure-radius" diagram trace out this derived virial-theorem function for six different values of the adiabatic exponent, <math>~\gamma</math>, as labeled. They show the dimensionless external pressure, <math>~\Pi_\mathrm{ad}</math>, that is required to construct a nonrotating, self-gravitating, adiabatic sphere with a dimensionless equilibrium radius <math>~\chi_\mathrm{ad}</math>. The mathematical solution becomes unphysical wherever the pressure becomes negative.

Relationship to Detailed Force-Balanced Models

In our accompanying detailed analysis, we demonstrate that the expressions given above for the free-energy function and the virial theorem are correct in sufficiently strict detail that they can be used to precisely match — and assist in understanding — the equilibrium of embedded polytropes whose structures have been determined from the set of detailed force-balance equations. In order to draw this association, it is only necessary to realize that, very broadly, the constant coefficients, <math>~\mathcal{A}</math> and <math>~\mathcal{B}</math>, in the above algebraic free-energy expression are expressible in terms of three structural form factors, <math>~\mathfrak{f}_M</math>, <math>~\mathfrak{f}_W</math>, and <math>~\mathfrak{f}_A</math>, as follows:

<math>~\mathcal{A}</math>

<math>~\equiv</math>

<math>\frac{1}{5} \cdot \biggl[ \biggl( \frac{M_\mathrm{limit}}{M_\mathrm{tot}} \biggr) \frac{1}{\mathfrak{f}_M} \biggr]^2 \cdot \mathfrak{f}_W \, ,</math>

<math>~\mathcal{B}</math>

<math>~\equiv</math>

<math> \frac{4\pi}{3} \biggl[ \frac{3}{4\pi} \biggl( \frac{M_\mathrm{limit}}{M_\mathrm{tot}}\biggr) \frac{1}{\mathfrak{f}_M} \biggr]_\mathrm{eq}^{\gamma} \cdot \mathfrak{f}_A = \frac{4\pi}{3} \biggl[ \biggl( \frac{P_c}{P_\mathrm{norm}} \biggr)\chi^{3\gamma} \biggr]_\mathrm{eq} \cdot \mathfrak{f}_A \, ; </math>

and that, specifically in the context of spherical polytropes, we can write,

Structural Form Factors for Pressure-Truncated Polytropes

<math>~\tilde\mathfrak{f}_M</math>

<math>~=</math>

<math>~ \biggl[ - \frac{3\Theta^'}{\xi} \biggr]_{\tilde\xi} </math>

<math>\tilde\mathfrak{f}_W </math>

<math>~=</math>

<math>~\frac{3^2\cdot 5}{5-n} \biggl[ \frac{\Theta^'}{\xi} \biggr]^2_{\tilde\xi} </math>

<math>\tilde\mathfrak{f}_A </math>

<math>~=</math>

<math> \frac{3(n+1) }{(5-n)} ~\biggl[ \Theta^' \biggr]^2_{\tilde\xi} + \tilde\Theta^{n+1} </math>

If we plug these nontrivial expressions for <math>~\mathcal{A}</math> and <math>~\mathcal{B}</math> into the righthand sides of the above equations for <math>~\Pi_\mathrm{ad}</math> and <math>~\chi_\mathrm{ad}</math> and, simultaneously, use Hoerdt's detailed force-balanced expressions for <math>~r_a</math> and <math>~p_a</math> to specify, respectively, <math>~\chi_\mathrm{eq}</math> and <math>~P_e/P_\mathrm{norm}</math> in these same equations, we have shown that the resulting algebraic relations for <math>~\Pi_\mathrm{ad}</math> and <math>~\chi_\mathrm{ad}</math> satisfy the above algebraic virial theorem relation.

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation