Difference between revisions of "User:Tohline/SSC/UniformDensity"

From VistrailsWiki
Jump to navigation Jump to search
(→‎Setup: Plug functions into generic ODE)
(→‎n = 1 Polytrope: Introduce (n+1) correction to central pressure determination)
Line 159: Line 159:
From our derived [http://www.vistrails.org/index.php/User:Tohline/SSC/Polytropes Structure of an n = 1 polytrope], in terms of the configuration's radius <math>R</math> and mass <math>M</math>, the central pressure and density are, respectively,
From our derived [http://www.vistrails.org/index.php/User:Tohline/SSC/Polytropes Structure of an n = 1 polytrope], in terms of the configuration's radius <math>R</math> and mass <math>M</math>, the central pressure and density are, respectively,
<div align="center">
<div align="center">
<math>P_c = \frac{\pi G}{4}\biggl( \frac{M^2}{R^4} \biggr) </math> ,  
<math>P_c = \frac{\pi G}{8}\biggl( \frac{M^2}{R^4} \biggr) </math> ,  
</div>
</div>
and
and
Line 169: Line 169:
<math>  
<math>  
\tau_\mathrm{SSC} = \biggl[ \frac{R^2 \rho_c}{P_c} \biggr]^{1/2} =  
\tau_\mathrm{SSC} = \biggl[ \frac{R^2 \rho_c}{P_c} \biggr]^{1/2} =  
\biggl[ \frac{R^3 }{GM} \biggr]^{1/2} =  
\biggl[ \frac{2R^3 }{GM} \biggr]^{1/2} =  
\biggl[ \frac{\pi}{4 G\rho_c} \biggr]^{1/2},
\biggl[ \frac{\pi}{2 G\rho_c} \biggr]^{1/2},
</math><br />
</math><br />
</div>
</div>
Line 176: Line 176:
<div align="center">
<div align="center">
<math>  
<math>  
g_\mathrm{SSC} = \frac{P_c}{R \rho_c} = \biggl( \frac{GM}{R^2} \biggr) .
g_\mathrm{SSC} = \frac{P_c}{R \rho_c} = \biggl( \frac{GM}{2R^2} \biggr) .
</math><br />
</math><br />
</div>
</div>
Line 194: Line 194:
<div align="center">
<div align="center">
<math>  
<math>  
\frac{g_0(r_0)}{g_\mathrm{SSC}} = \frac{1}{\chi_0^2} \biggl[ \frac{M_r(\chi_0)}{M}\biggr]  =
\frac{g_0(r_0)}{g_\mathrm{SSC}} = \frac{2}{\chi_0^2} \biggl[ \frac{M_r(\chi_0)}{M}\biggr]  =
\frac{1}{\pi \chi_0^2} \biggl[ \sin (\pi\chi_0 ) - \pi\chi_0 \cos (\pi\chi_0 ) \biggr].
\frac{2}{\pi \chi_0^2} \biggl[ \sin (\pi\chi_0 ) - \pi\chi_0 \cos (\pi\chi_0 ) \biggr].
</math><br />
</math><br />
</div>
</div>
Line 209: Line 209:
<div align="center">
<div align="center">
<math>
<math>
\frac{d^2x}{d\chi_0^2} + \frac{1}{\chi_0} \biggl\{ 4 - \frac{1}{\sin(\pi\chi_0)} \biggl[ \sin (\pi\chi_0 ) - \pi\chi_0 \cos (\pi\chi_0 ) \biggr] \biggr\} \frac{dx}{d\chi_0} + \frac{1}{\chi_0^2 \sin(\pi\chi_0)} \biggl(\frac{1}{\gamma_\mathrm{g}} \biggr)\biggl\{ \pi \chi_0^3\tau_\mathrm{SSC}^2 \omega^2 + (4 - 3\gamma_\mathrm{g}) \biggl[ \sin (\pi\chi_0 ) - \pi\chi_0 \cos (\pi\chi_0 ) \biggr] \biggr\}  x = 0 .
\frac{d^2x}{d\chi_0^2} + \frac{2}{\chi_0} \biggl[ 1 \pi\chi_0 \cot (\pi\chi_0 ) \biggr] \frac{dx}{d\chi_0} + \frac{1}{\chi_0^2 } \biggl(\frac{1}{\gamma_\mathrm{g}} \biggr)\biggl\{ \frac{\pi \chi_0^3\tau_\mathrm{SSC}^2 \omega^2}{\sin(\pi\chi_0)} + 2(4 - 3\gamma_\mathrm{g}) \biggl[ 1 - \pi\chi_0 \cot (\pi\chi_0 ) \biggr] \biggr\}  x = 0 .
</math><br />
</math><br />
</div>
</div>

Revision as of 02:33, 16 February 2010

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Spherically Symmetric Configurations (Stability — Part III)

LSU Stable.animated.gif

Suppose we now want to study the stability of one of the spherically symmetric, equilibrium structures that have been derived elsewhere. The identified set of simplified, time-dependent governing equations will tell us how the configuration will respond to an applied radial (i.e., spherically symmetric) perturbation that pushes the configuration slightly away from its initial equilibrium state.


The Eigenvalue Problem

As has been derived in an accompanying discussion, the second-order ODE that defines the relevant Eigenvalue problem is,

<math> \frac{d^2x}{d\chi_0^2} + \biggl[\frac{4}{\chi_0} - \biggl(\frac{\rho_0}{\rho_c}\biggr) \biggl(\frac{P_0}{P_c}\biggr)^{-1} \biggl(\frac{g_0}{g_\mathrm{SSC}}\biggr) \biggr] \frac{dx}{d\chi_0} + \biggl(\frac{\rho_0}{\rho_c}\biggr) \biggl(\frac{P_0}{P_c}\biggr)^{-1} \biggl(\frac{1}{\gamma_\mathrm{g}} \biggr)\biggl[\tau_\mathrm{SSC}^2 \omega^2 + (4 - 3\gamma_\mathrm{g})\biggl(\frac{g_0}{g_\mathrm{SSC}}\biggr) \frac{1}{\chi_0} \biggr] x = 0 . </math>

where the dimensionless radius,

<math> \chi_0 \equiv \frac{r_0}{R} , </math>

the characteristic time for dynamical oscillations in spherically symmetric configurations (SSC) is,

<math> \tau_\mathrm{SSC} \equiv \biggl[ \frac{R^2 \rho_c}{P_c} \biggr]^{1/2} , </math>

and the characteristic gravitational acceleration is,

<math> g_\mathrm{SSC} \equiv \frac{P_c}{R \rho_c} . </math>

Uniform-Density Configuration

Setup

From our derived Structure of a uniform-density sphere, in terms of the configuration's radius <math>R</math> and mass <math>M</math>, the central pressure and density are, respectively,

<math>P_c = \frac{3G}{8\pi}\biggl( \frac{M^2}{R^4} \biggr) </math> ,

and

<math>\rho_c = \frac{3M}{4\pi R^3} </math> .

Hence the characteristic time and acceleration are, respectively,

<math> \tau_\mathrm{SSC} = \biggl[ \frac{R^2 \rho_c}{P_c} \biggr]^{1/2} = \biggl[ \frac{2R^3 }{GM} \biggr]^{1/2} = \biggl[ \frac{3}{2\pi G\rho_c} \biggr]^{1/2}, </math>

and,

<math> g_\mathrm{SSC} = \frac{P_c}{R \rho_c} = \biggl( \frac{GM}{2R^2} \biggr) . </math>

The required functions are,

  • Density:

<math>\frac{\rho_0(r_0)}{\rho_c} = 1 </math> ;

  • Pressure:

<math>\frac{P_0(r_0)}{P_c} = 1 - \chi_0^2 </math> ;

  • Gravitational acceleration:

<math> \frac{g_0(r_0)}{g_\mathrm{SSC}} = 2\chi_0 . </math>

So our desired Eigenvalues and Eigenvectors will be solutions to the following ODE:

<math> \frac{1}{(1 - \chi_0^2)} \biggl\{ (1 - \chi_0^2) \frac{d^2x}{d\chi_0^2} + \frac{4}{\chi_0}\biggl[1 - \frac{3}{2}\chi_0^2 \biggr] \frac{dx}{d\chi_0} + \frac{1}{\gamma_\mathrm{g}} \biggl[\tau_\mathrm{SSC}^2 \omega^2 + 2 (4 - 3\gamma_\mathrm{g}) \biggr] x \biggr\} = 0 . </math>

First few lowest-order modes

  • Mode 0:
<math>x_0 = \mathrm{constant}</math>, in which case,

<math> \omega_0^2 = - 2(4 - 3\gamma_\mathrm{g})\biggl[ \frac{2\pi G\rho_c}{3} \biggr] = 4\pi G \rho_c \biggl[ \gamma_\mathrm{g}- \frac{4}{3} \biggr] </math>

  • Mode 1:
<math>x_1 = a + b\chi_0^2</math>, in which case,

<math> \frac{dx}{d\chi_0} = 2b\chi_0; ~~~~ \frac{d^2 x}{d\chi_0^2} = 2b; </math>

<math> \frac{1}{(1 - \chi_0^2)} \biggl\{ 2b (1 - \chi_0^2) + 8b \biggl[1 - \frac{3}{2}\chi_0^2 \biggr] + A_1 \biggl(1 + \frac{b}{a}\chi_0^2 \biggr) \biggr\} = 0 , </math>

where,

<math> A_1 \equiv \frac{a}{\gamma_\mathrm{g}}\biggl[ \biggl( \frac{3}{2\pi G\rho_c} \biggr) \omega_1^2+ 2(4 - 3\gamma_\mathrm{g}) \biggr] . </math>

Therefore,

<math> (A_1 + 10b) + \biggl[ \biggl(\frac{b}{a}\biggr) A_1 - 14b \biggr] \chi_0^2 = 0 , </math>

<math> \Rightarrow ~~~~~ A_1 = - 10b ~~~~~\mathrm{and} ~~~~~ A_1 = 14a </math>

<math> \Rightarrow ~~~~~ \frac{b}{a} = -\frac{7}{5} ~~~~~\mathrm{and} ~~~~~ \frac{A_1}{a} = 14 = \frac{1}{\gamma_\mathrm{g}}\biggl[ \biggl( \frac{3}{2\pi G\rho_c} \biggr) \omega_1^2+ 2(4 - 3\gamma_\mathrm{g}) \biggr] .

</math>

Hence,

<math> \biggl( \frac{3}{2\pi G\rho_c} \biggr) \omega_1^2 = 20\gamma_\mathrm{g} -8 </math>

<math> \Rightarrow ~~~~~ \omega_1^2 = \frac{2}{3}\biggl( 4\pi G\rho_c \biggr) (5\gamma_\mathrm{g} -2) </math>

and, to within an arbitrary normalization factor,

<math> x_1 = 1 - \frac{7}{5}\chi_0^2 . </math>



n = 1 Polytrope

Setup

From our derived Structure of an n = 1 polytrope, in terms of the configuration's radius <math>R</math> and mass <math>M</math>, the central pressure and density are, respectively,

<math>P_c = \frac{\pi G}{8}\biggl( \frac{M^2}{R^4} \biggr) </math> ,

and

<math>\rho_c = \frac{\pi M}{4 R^3} </math> .

Hence the characteristic time and acceleration are, respectively,

<math> \tau_\mathrm{SSC} = \biggl[ \frac{R^2 \rho_c}{P_c} \biggr]^{1/2} = \biggl[ \frac{2R^3 }{GM} \biggr]^{1/2} = \biggl[ \frac{\pi}{2 G\rho_c} \biggr]^{1/2}, </math>

and,

<math> g_\mathrm{SSC} = \frac{P_c}{R \rho_c} = \biggl( \frac{GM}{2R^2} \biggr) . </math>

The required functions are,

  • Density:

<math>\frac{\rho_0(\chi_0)}{\rho_c} = \frac{\sin(\pi\chi_0)}{\pi\chi_0} </math> ;

  • Pressure:

<math>\frac{P_0(\chi_0)}{P_c} = \biggl[ \frac{\sin(\pi\chi_0)}{\pi\chi_0} \biggr]^2 </math> ;

  • Gravitational acceleration:

<math> \frac{g_0(r_0)}{g_\mathrm{SSC}} = \frac{2}{\chi_0^2} \biggl[ \frac{M_r(\chi_0)}{M}\biggr] = \frac{2}{\pi \chi_0^2} \biggl[ \sin (\pi\chi_0 ) - \pi\chi_0 \cos (\pi\chi_0 ) \biggr]. </math>

So our desired Eigenvalues and Eigenvectors will be solutions to the following ODE:

<math> \frac{d^2x}{d\chi_0^2} + \biggl[\frac{4}{\chi_0} - \biggl(\frac{\rho_0}{\rho_c}\biggr) \biggl(\frac{P_0}{P_c}\biggr)^{-1} \biggl(\frac{g_0}{g_\mathrm{SSC}}\biggr) \biggr] \frac{dx}{d\chi_0} + \biggl(\frac{\rho_0}{\rho_c}\biggr) \biggl(\frac{P_0}{P_c}\biggr)^{-1} \biggl(\frac{1}{\gamma_\mathrm{g}} \biggr)\biggl[\tau_\mathrm{SSC}^2 \omega^2 + (4 - 3\gamma_\mathrm{g})\biggl(\frac{g_0}{g_\mathrm{SSC}}\biggr) \frac{1}{\chi_0} \biggr] x = 0 . </math>


<math> \frac{d^2x}{d\chi_0^2} + \frac{2}{\chi_0} \biggl[ 1 + \pi\chi_0 \cot (\pi\chi_0 ) \biggr] \frac{dx}{d\chi_0} + \frac{1}{\chi_0^2 } \biggl(\frac{1}{\gamma_\mathrm{g}} \biggr)\biggl\{ \frac{\pi \chi_0^3\tau_\mathrm{SSC}^2 \omega^2}{\sin(\pi\chi_0)} + 2(4 - 3\gamma_\mathrm{g}) \biggl[ 1 - \pi\chi_0 \cot (\pi\chi_0 ) \biggr] \biggr\} x = 0 . </math>



Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation