Difference between revisions of "User:Tohline/SSC/Structure/Other Analytic Models"

From VistrailsWiki
Jump to navigation Jump to search
(→‎Other Analytically Definable, Spherical Equilibrium Models: Begin to lay out Prasad's parabolic density distribution)
Line 5: Line 5:


==Linear Density Distribution==
==Linear Density Distribution==
In an article titled, "Stellar Evolution:  A Survey with Analytic Models," [http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19660024135.pdf R. F. Stein] (1966, in ''Stellar Evolution, Proceedings of an International Conference held at the Goddard Space Flight Center, Greenbelt'', MD, U.S.A., edited by R. F. Stein & A. G. W. Cameron, pp. 1-105) defines the "Linear Stellar Model" as a star whose density "varies linearly from the center to the surface," that is,
In an article titled, "Stellar Evolution:  A Survey with Analytic Models," [http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19660024135.pdf R. F. Stein] (1966, in ''Stellar Evolution, Proceedings of an International Conference held at the Goddard Space Flight Center, Greenbelt'', MD, U.S.A., edited by R. F. Stein & A. G. W. Cameron, pp. 1-105) defines the "Linear Stellar Model" as a star whose density "varies linearly from the center to the surface," that is (see his equation 3.1),
<div align="center">
<div align="center">
<math>\rho(r) = \rho_c\biggl( 1 - \frac{r}{R} \biggr) \, ,</math>
<math>\rho(r) = \rho_c\biggl( 1 - \frac{r}{R} \biggr) \, ,</math>
Line 55: Line 55:
</table>
</table>
</div>
</div>
Hence, proceeding via what we have labeled as [[User:Tohline/SphericallySymmetricConfigurations/SolutionStrategies#Technique_1|"Technique 1"]], and enforcing the surface boundary condition, <math>~P(R) = 0</math>, [http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19660024135.pdf Stein (1966)] determines that,
Hence, proceeding via what we have labeled as [[User:Tohline/SphericallySymmetricConfigurations/SolutionStrategies#Technique_1|"Technique 1"]], and enforcing the surface boundary condition, <math>~P(R) = 0</math>, [http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19660024135.pdf Stein (1966)] determines that (see his equation 3.5),
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
Line 91: Line 91:


==Parabolic Density Distribution==
==Parabolic Density Distribution==
In an article titled, "Radial Oscillations of a Stellar Model," [http://adsabs.harvard.edu/abs/1949MNRAS.109..103P C. Prasad (1949, MNRAS, 109, 103)] investigated the properties of an equilibrium configuration with a prescribed density distribution given by the expression,
<div align="center">
<math>\rho(r) = \rho_c\biggl[ 1 - \biggl(\frac{r}{R} \biggr)^2 \biggr] \, ,</math>
</div>
where, <math>~\rho_c</math> is the central density and, <math>~R</math> is the radius of the star.  Both the mass distribution and the pressure distribution can be obtained analytically from this specified density distribution.  Specifically, following our [[User:Tohline/SphericallySymmetricConfigurations/SolutionStrategies#Solution_Strategies|general solution strategy]] for determining the equilibrium structure of spherically symmetric, self-gravitating configurations,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~M_r(r)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\int_0^r 4\pi r^2 \rho(r) dr</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{4\pi\rho_c r^3}{3} \biggl[1 - \frac{3}{5} \biggl( \frac{r}{R} \biggr)^2 \biggr] \, ,</math>
  </td>
</tr>
</table>
</div>
in which case we can write,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~g_0(r) \equiv \frac{G M_r(r) \rho(r)}{r^2} </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{4\pi G \rho_c^2 r}{3} \biggl[ 1 - \biggl(\frac{r}{R} \biggr)^2\biggr]
\biggl[1 - \frac{3}{5} \biggl( \frac{r}{R} \biggr)^2\biggr] </math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{4\pi G \rho_c^2 r}{15} \biggl[ 5 - 8\biggl(\frac{r}{R} \biggr)^2 + 3\biggl( \frac{r}{R} \biggr)^4\biggr] \, .</math>
  </td>
</tr>
</table>
</div>
Hence, proceeding via what we have labeled as [[User:Tohline/SphericallySymmetricConfigurations/SolutionStrategies#Technique_1|"Technique 1"]], and enforcing the surface boundary condition, <math>~P(R) = 0</math>, [http://adsabs.harvard.edu/abs/1949MNRAS.109..103P Prasad (1949)] determines that,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~P(r)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~- \int_0^r g_0(r) dr</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{2\pi G\rho_c^2 R^2}{15} \biggl[2 - 5 \biggl( \frac{r}{R} \biggr)^2
+ 4 \biggl( \frac{r}{R} \biggr)^4 - \biggl( \frac{r}{R} \biggr)^6 \biggr] </math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{4\pi G\rho_c^2 R^2}{15} \biggl[1-\biggl(\frac{r}{R}\biggr)^2\biggr]^2
\biggl[1-\frac{1}{2}\biggl(\frac{r}{R}\biggr)^2\biggr] \, ,</math>
  </td>
</tr>
</table>
</div>
where, it can readily be deduced, as well, that the central pressure is,
<div align="center">
<math>~P_c = \frac{4\pi}{15} G\rho_c^2 R^2 \, .</math>
</div>






{{LSU_HBook_footer}}
{{LSU_HBook_footer}}

Revision as of 02:09, 20 June 2015

Other Analytically Definable, Spherical Equilibrium Models

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Linear Density Distribution

In an article titled, "Stellar Evolution: A Survey with Analytic Models," R. F. Stein (1966, in Stellar Evolution, Proceedings of an International Conference held at the Goddard Space Flight Center, Greenbelt, MD, U.S.A., edited by R. F. Stein & A. G. W. Cameron, pp. 1-105) defines the "Linear Stellar Model" as a star whose density "varies linearly from the center to the surface," that is (see his equation 3.1),

<math>\rho(r) = \rho_c\biggl( 1 - \frac{r}{R} \biggr) \, ,</math>

where, <math>~\rho_c</math> is the central density and, <math>~R</math> is the radius of the star. Both the mass distribution and the pressure distribution can be obtained analytically from this specified density distribution. Specifically, following our general solution strategy for determining the equilibrium structure of spherically symmetric, self-gravitating configurations,

<math>~M_r(r)</math>

<math>~=</math>

<math>~\int_0^r 4\pi r^2 \rho(r) dr</math>

 

<math>~=</math>

<math>~\frac{4\pi\rho_c r^3}{3} \biggl[1 - \frac{3}{4} \biggl( \frac{r}{R} \biggr)\biggr] \, ,</math>

in which case we can write,

<math>~g_0(r) \equiv \frac{G M_r(r) \rho(r)}{r^2} </math>

<math>~=</math>

<math>~\frac{4\pi G \rho_c^2 r}{3} \biggl( 1 - \frac{r}{R} \biggr) \biggl[1 - \frac{3}{4} \biggl( \frac{r}{R} \biggr)\biggr] \, .</math>

Hence, proceeding via what we have labeled as "Technique 1", and enforcing the surface boundary condition, <math>~P(R) = 0</math>, Stein (1966) determines that (see his equation 3.5),

<math>~P(r)</math>

<math>~=</math>

<math>~- \int_0^r g_0(r) dr</math>

 

<math>~=</math>

<math>~\frac{\pi G\rho_c^2 R^2}{36} \biggl[5 - 24 \biggl( \frac{r}{R} \biggr)^2 + 28 \biggl( \frac{r}{R} \biggr)^3 - 9 \biggl( \frac{r}{R} \biggr)^4 \biggr] \, ,</math>

where, it can readily be deduced, as well, that the central pressure is,

<math>~P_c = \frac{5\pi}{36} G\rho_c^2 R^2 \, .</math>

Parabolic Density Distribution

In an article titled, "Radial Oscillations of a Stellar Model," C. Prasad (1949, MNRAS, 109, 103) investigated the properties of an equilibrium configuration with a prescribed density distribution given by the expression,

<math>\rho(r) = \rho_c\biggl[ 1 - \biggl(\frac{r}{R} \biggr)^2 \biggr] \, ,</math>

where, <math>~\rho_c</math> is the central density and, <math>~R</math> is the radius of the star. Both the mass distribution and the pressure distribution can be obtained analytically from this specified density distribution. Specifically, following our general solution strategy for determining the equilibrium structure of spherically symmetric, self-gravitating configurations,

<math>~M_r(r)</math>

<math>~=</math>

<math>~\int_0^r 4\pi r^2 \rho(r) dr</math>

 

<math>~=</math>

<math>~\frac{4\pi\rho_c r^3}{3} \biggl[1 - \frac{3}{5} \biggl( \frac{r}{R} \biggr)^2 \biggr] \, ,</math>

in which case we can write,

<math>~g_0(r) \equiv \frac{G M_r(r) \rho(r)}{r^2} </math>

<math>~=</math>

<math>~\frac{4\pi G \rho_c^2 r}{3} \biggl[ 1 - \biggl(\frac{r}{R} \biggr)^2\biggr] \biggl[1 - \frac{3}{5} \biggl( \frac{r}{R} \biggr)^2\biggr] </math>

 

<math>~=</math>

<math>~\frac{4\pi G \rho_c^2 r}{15} \biggl[ 5 - 8\biggl(\frac{r}{R} \biggr)^2 + 3\biggl( \frac{r}{R} \biggr)^4\biggr] \, .</math>

Hence, proceeding via what we have labeled as "Technique 1", and enforcing the surface boundary condition, <math>~P(R) = 0</math>, Prasad (1949) determines that,

<math>~P(r)</math>

<math>~=</math>

<math>~- \int_0^r g_0(r) dr</math>

 

<math>~=</math>

<math>~\frac{2\pi G\rho_c^2 R^2}{15} \biggl[2 - 5 \biggl( \frac{r}{R} \biggr)^2 + 4 \biggl( \frac{r}{R} \biggr)^4 - \biggl( \frac{r}{R} \biggr)^6 \biggr] </math>

 

<math>~=</math>

<math>~\frac{4\pi G\rho_c^2 R^2}{15} \biggl[1-\biggl(\frac{r}{R}\biggr)^2\biggr]^2 \biggl[1-\frac{1}{2}\biggl(\frac{r}{R}\biggr)^2\biggr] \, ,</math>

where, it can readily be deduced, as well, that the central pressure is,

<math>~P_c = \frac{4\pi}{15} G\rho_c^2 R^2 \, .</math>


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation