Difference between revisions of "User:Tohline/SSC/Structure/Other Analytic Models"

From VistrailsWiki
Jump to navigation Jump to search
(→‎Linear Density Distribution: Begin detailing properties of Stein's "linear stellar model")
(→‎Linear Density Distribution: More details regarding Stein's "linear stellar model")
Line 5: Line 5:


==Linear Density Distribution==
==Linear Density Distribution==
[http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19660024135.pdf R. F. Stein (1966)] defines the "Linear Stellar Model" as a star whose density "varies linearly from the center to the surface," that is,
In an article titled, "Stellar Evolution:  A Survey with Analytic Models," [http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19660024135.pdf R. F. Stein] (1966, in ''Stellar Evolution, Proceedings of an International Conference held at the Goddard Space Flight Center, Greenbelt, MD, U.S.A., edited by R. F. Stein & A. G. W. Cameron, pp. 1-105) defines the "Linear Stellar Model" as a star whose density "varies linearly from the center to the surface," that is,
<div align="center">
<div align="center">
<math>\rho(r) = \rho_c\biggl( 1 - \frac{r}{R} \biggr) \, ,</math>
<math>\rho(r) = \rho_c\biggl( 1 - \frac{r}{R} \biggr) \, ,</math>
</div>
</div>
where, <math>~\rho_c</math> is the central density and, <math>~R</math> is the radius of the star.  Both the mass distribution and the pressure distribution can be obtained analytically from this specified density distribution.  Specifically,
where, <math>~\rho_c</math> is the central density and, <math>~R</math> is the radius of the star.  Both the mass distribution and the pressure distribution can be obtained analytically from this specified density distribution.  Specifically, following our [[User:Tohline/SphericallySymmetricConfigurations/SolutionStrategies#Solution_Strategies|general solution strategy]] for determining the equilibrium structure of spherically symmetric, self-gravitating configurations,
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
Line 44: Line 44:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~g_0 \equiv \frac{G M_r(r) \rho(r)}{r^2} </math>
<math>~g_0(r) \equiv \frac{G M_r(r) \rho(r)}{r^2} </math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 55: Line 55:
</table>
</table>
</div>
</div>
Hence,  
Hence, proceeding via what we have labeled as [[User:Tohline/SphericallySymmetricConfigurations/SolutionStrategies#Technique_1|"Technique 1"]], and enforcing the surface boundary condition, <math>~P(R) = 0</math>, [http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19660024135.pdf Stein (1966)] determines that,
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
Line 67: Line 67:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~P_c - \int_0^r g_0(r) dr</math>
<math>~- \int_0^r g_0(r) dr</math>
   </td>
   </td>
</tr>
</tr>
Line 85: Line 85:
</table>
</table>
</div>
</div>
where, we have enforced the surface boundary condition, <math>~P(R) = 0</math>, and the central pressure is,
where, it can readily be deduced, as well, that the central pressure is,
<div align="center">
<div align="center">
<math>~P_c = \frac{5\pi}{36} G\rho_c^2 R^2 \, .</math>
<math>~P_c = \frac{5\pi}{36} G\rho_c^2 R^2 \, .</math>

Revision as of 23:26, 19 June 2015

Other Analytically Definable, Spherical Equilibrium Models

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Linear Density Distribution

In an article titled, "Stellar Evolution: A Survey with Analytic Models," R. F. Stein (1966, in Stellar Evolution, Proceedings of an International Conference held at the Goddard Space Flight Center, Greenbelt, MD, U.S.A., edited by R. F. Stein & A. G. W. Cameron, pp. 1-105) defines the "Linear Stellar Model" as a star whose density "varies linearly from the center to the surface," that is,

<math>\rho(r) = \rho_c\biggl( 1 - \frac{r}{R} \biggr) \, ,</math>

where, <math>~\rho_c</math> is the central density and, <math>~R</math> is the radius of the star. Both the mass distribution and the pressure distribution can be obtained analytically from this specified density distribution. Specifically, following our general solution strategy for determining the equilibrium structure of spherically symmetric, self-gravitating configurations,

<math>~M_r(r)</math>

<math>~=</math>

<math>~\int_0^r 4\pi r^2 \rho(r) dr</math>

 

<math>~=</math>

<math>~\frac{4\pi\rho_c r^3}{3} \biggl[1 - \frac{3}{4} \biggl( \frac{r}{R} \biggr)\biggr] \, ,</math>

in which case we can write,

<math>~g_0(r) \equiv \frac{G M_r(r) \rho(r)}{r^2} </math>

<math>~=</math>

<math>~\frac{4\pi\rho_c^2 r}{3} \biggl( 1 - \frac{r}{R} \biggr) \biggl[1 - \frac{3}{4} \biggl( \frac{r}{R} \biggr)\biggr] \, .</math>

Hence, proceeding via what we have labeled as "Technique 1", and enforcing the surface boundary condition, <math>~P(R) = 0</math>, Stein (1966) determines that,

<math>~P(r)</math>

<math>~=</math>

<math>~- \int_0^r g_0(r) dr</math>

 

<math>~=</math>

<math>~\frac{\pi G\rho_c^2 R^2}{36} \biggl[5 - 24 \biggl( \frac{r}{R} \biggr)^2 + 28 \biggl( \frac{r}{R} \biggr)^3 - 9 \biggl( \frac{r}{R} \biggr)^4 \biggr] \, ,</math>

where, it can readily be deduced, as well, that the central pressure is,

<math>~P_c = \frac{5\pi}{36} G\rho_c^2 R^2 \, .</math>

Parabolic Density Distribution

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation