Difference between revisions of "User:Tohline/SSC/IsothermalSimilaritySolution"
Line 10:  Line 10:  
==Establishing Set of Governing Equations==  ==Establishing Set of Governing Equations==  
[[User:Tohline/SSC/IsothermalCollapse#  Drawing from an [[User:Tohline/SSC/IsothermalCollapse#IsothermalEulerianFrameaccompanying chapter's introductory discussion]], we begin with the set of governing equations that describe the collapse of isothermal spheres from an Eulerian frame of reference.  
<div align="center">  <div align="center">  
<table border="1" cellpadding="8" align="center">  <table border="1" cellpadding="8" align="center">  
Line 61:  Line 60:  
</div>  </div>  
Following [[User:Tohline/SSC/IsothermalCollapse#Larson_.281969.29Larson's (1969) lead]], we have replaced the standard continuity equation with the following equivalent statement of mass conservation:  
<div align="center">  <div align="center">  
<table border="0" cellpadding="5" align="center">  <table border="0" cellpadding="5" align="center"> 
Revision as of 17:58, 9 July 2017
Similarity Solution
 Tiled Menu  Tables of Content  Banner Video  Tohline Home Page  
Several authors (references given, below) have shown that when isothermal pressure gradients are important during a gas cloud's collapse, the equations governing the collapse admit a set of similarity solutions. Certain properties of these solutions can be described analytically and are instructive models for comparison with more detailed, numerical collapse calculations.
Establishing Set of Governing Equations
Drawing from an accompanying chapter's introductory discussion, we begin with the set of governing equations that describe the collapse of isothermal spheres from an Eulerian frame of reference.
Eulerian Frame  


Following Larson's (1969) lead, we have replaced the standard continuity equation with the following equivalent statement of mass conservation:
<math>~\frac{dM_r}{dt}</math> 
<math>~=</math> 
<math>~0 </math> 
<math>~\Rightarrow ~~~ 0</math> 
<math>~=</math> 
<math>~\frac{\partial M_r}{\partial t} + v_r ~\frac{\partial M_r}{\partial r} </math> 

<math>~=</math> 
<math>~\frac{\partial M_r}{\partial t} +4\pi r^2 \rho v_r \, .</math> 
Solution
A similarity solution becomes possible for these equations when the single independent variable,
<math>~\zeta = \frac{c_s t}{r} \, ,</math>
is used to replace both <math>~r</math> and <math>~t</math>. Then, if <math>~M_r</math>, <math>~\rho</math>, and <math>~v_r</math> assume the following forms,
<math>~M_r(r,t)</math> 
<math>~=</math> 
<math>~\biggl(\frac{c_s^2 t}{G}\biggr) m(\zeta) \, ,</math> 
<math>~\rho(r,t)</math> 
<math>~=</math> 
<math>~\biggl(\frac{c_s^2 }{4\pi G r^2}\biggr) P(\zeta) \, ,</math> 
<math>~v_r(r,t)</math> 
<math>~=</math> 
<math>~ c_s U(\zeta) \, ,</math> 
the three coupled partial differential equations reduce to two coupled ordinary differential equations for the functions, <math>~P(\zeta)</math> and <math>~U(\zeta)</math>, namely,
<math>~\frac{dU}{d\zeta}</math> 
<math>~=</math> 
<math>~ \frac{}{[ (\zeta U +1)^2  \zeta^2]} \, , </math> 
<math>~\frac{dP}{d\zeta}</math> 
<math>~=</math> 
<math>~\frac{}{[ (\zeta U +1)^2  \zeta^2]} \, ,</math> 
and a single equation defining <math>~m(\zeta)</math>,
<math>~m(\zeta)</math> 
<math>~=</math> 
<math>~P \biggl[ U + \frac{1}{\zeta} \biggr] \, .</math> 
See Especially
 M. V. Penston (1969, MNRAS, 144, 425): Dynamics of SelfGravitating Gaseous Sphers  III. Analytic Results in the FreeFall of Isothermal Cases
 Richard B. Larson (1969, MNRAS, 145, 271): Numerical Calculations of the Dynamics of Collapsing ProtoStar
 F. H. Shu (1977, ApJ, 214, 488497): SelfSimilar Collapse of Isothermal Spheres and Star Formation
 C. Hunter (1977, ApJ, 218, 834845): The Collapse of Unstable Isothermal Spheres
© 2014  2021 by Joel E. Tohline 