Difference between revisions of "User:Tohline/AxisymmetricConfigurations/PGE"

From VistrailsWiki
Jump to navigation Jump to search
m (Move title image)
Line 3: Line 3:
=Axisymmetric Configurations (Part I)=
=Axisymmetric Configurations (Part I)=
{{LSU_HBook_header}}
{{LSU_HBook_header}}
If the self-gravitating configuration that we wish to construct is axisymmetric, then the coupled set of multidimensional, partial differential equations that serve as our [[User:Tohline/PGE|principal governing equations]] can be simplified to a coupled set of two-dimensional PDEs.  Here we accomplish this by,
If the self-gravitating configuration that we wish to construct is axisymmetric, then the coupled set of multidimensional, partial differential equations that serve as our [[User:Tohline/PGE|principal governing equations]] can be simplified to a coupled set of two-dimensional PDEs.   
 
==Cylindrical Coordinate Base==
Here we choose to …


<ol>
<ol>
<li>Expressing each of the multidimensional spatial operators in cylindrical coordinates (<math>\varpi, \varphi, z</math>)  (see, for example, the [http://en.wikipedia.org/wiki/Del_in_cylindrical_and_spherical_coordinates Wikipedia discussion of vector calculus formulae in cylindrical coordinates]) and setting to zero all spatial derivatives that are taken with respect to the angular coordinate <math>\varphi</math>:
<li>Express each of the multidimensional spatial operators in cylindrical coordinates (<math>\varpi, \varphi, z</math>)  (see, for example, the [http://en.wikipedia.org/wiki/Del_in_cylindrical_and_spherical_coordinates Wikipedia discussion of vector calculus formulae in cylindrical coordinates]) and set to zero all spatial derivatives that are taken with respect to the angular coordinate <math>\varphi</math>:


<table align="center" border="0" cellpadding="5">
<table align="center" border="0" cellpadding="5">
Line 82: Line 85:
</table>
</table>


<li>Expressing all vector time-derivatives in cylindrical coordinates:
<li>Express all vector time-derivatives in cylindrical coordinates:


<table align="center" border="0" cellpadding="5">
<table align="center" border="0" cellpadding="5">
Line 143: Line 146:
</ol>
</ol>


==Governing Equations==
===Governing Equations===


Introducing the above expressions into the [[User:Tohline/PGE|principal governing equations]] gives,
Introducing the above expressions into the [[User:Tohline/PGE|principal governing equations]] gives,
Line 178: Line 181:
</div>
</div>


==Conservation of Specific Angular Momentum==
===Conservation of Specific Angular Momentum===


The <math>\hat{e}_\varphi</math> component of the Euler equation leads to a statement of conservation of specific angular momentum, <math>j</math>, as follows.   
The <math>\hat{e}_\varphi</math> component of the Euler equation leads to a statement of conservation of specific angular momentum, <math>j</math>, as follows.   
Line 232: Line 235:




==Eulerian Formulation==
===Eulerian Formulation===


Each of the above simplified governing equations has been written in terms of Lagrangian time derivatives.  An Eulerian formulation of each equation can be obtained by replacing each Lagrangian time derivative by its Eulerian counterpart.  Specifically, for any scalar function, <math>f</math>,  
Each of the above simplified governing equations has been written in terms of Lagrangian time derivatives.  An Eulerian formulation of each equation can be obtained by replacing each Lagrangian time derivative by its Eulerian counterpart.  Specifically, for any scalar function, <math>f</math>,  
Line 244: Line 247:
</math>
</math>
</div>
</div>
==Spherical Coordinate Base==
Here we choose to &hellip;
<ol>
<li>Express each of the multidimensional spatial operators in spherical coordinates (<math>r, \theta, \varphi</math>)  (see, for example, the [http://en.wikipedia.org/wiki/Del_in_cylindrical_and_spherical_coordinates Wikipedia discussion of vector calculus formulae in spherical coordinates]) and set to zero all spatial derivatives that are taken with respect to the angular coordinate <math>\varphi</math>:
<table align="center" border="0" cellpadding="5">
<tr>
<td colspan="3" align="center">
<font color="#770000"><b>Spatial Operators in Spherical Coordinates</b></font>
</td>
</tr>
<tr>
<td align="right">
<math>
\nabla f
</math>
</td>
<td align="center">
=
</td>
<td align="left">
<math>
{\hat{e}}_r \biggl[ \frac{\partial f}{\partial r} \biggr]
+ {\hat{e}}_\theta \biggl[ \frac{1}{r} \frac{\partial f}{\partial\theta} \biggr]
+  {\hat{e}}_\varphi \cancel{\biggl[\frac{1}{r\sin\theta}~ \frac{\partial f}{\partial \varphi} \biggr]} ;
</math>
</td>
</tr>
<tr>
<td align="right">
<math>
\nabla^2 f
</math>
</td>
<td align="center">
=
</td>
<td align="left">
<math>
\frac{1}{r^2} \frac{\partial }{\partial r} \biggl[ r^2 \frac{\partial f}{\partial r} \biggr]
+ \frac{1}{r^2 \sin\theta} \frac{\partial }{\partial \theta}\biggl(\sin\theta \frac{\partial f}{\partial\theta}\biggr)
+ \cancel{ \biggl[\frac{1}{r^2 \sin^2\theta} \frac{\partial^2 f}{\partial \varphi^2} \biggr]} ;
</math>
</td>
</tr>
<tr>
<td align="right">
<math>
(\vec{v}\cdot\nabla)f
</math>
</td>
<td align="center">
=
</td>
<td align="left">
<math>
\biggl[ v_r \frac{\partial f}{\partial r} \biggr]
+ \biggl[ \frac{v_\theta}{r} \frac{\partial f}{\partial\theta} \biggr]
+ \cancel{\biggl[\frac{v_\varphi}{r\sin\theta}~ \frac{\partial f}{\partial \varphi} \biggr]} ;
</math>
</td>
</tr>
<tr>
<td align="right">
<math>
\nabla \cdot \vec{F}
</math>
</td>
<td align="center">
=
</td>
<td align="left">
<math>
\frac{1}{r^2} \frac{\partial (r^2 F_r)}{\partial r}
+ \frac{1}{r\sin\theta} \frac{\partial }{\partial\theta} \biggl( F_\theta \sin\theta \biggr)
+ \cancel{ \biggl[ \frac{1}{r\sin\theta}~\frac{\partial F_\varphi}{\partial \varphi} \biggr]} ;
</math>
</td>
</tr>
</table>
<li>Express all vector time-derivatives in cylindrical coordinates:
<table align="center" border="0" cellpadding="5">
<tr>
<td colspan="3" align="center">
<font color="#770000"><b>Vector Time-Derivatives in Cylindrical Coordinates</b></font>
</td>
</tr>
<tr>
<td align="right">
<math>
\frac{d}{dt}\vec{F}
</math>
</td>
<td align="center">
=
</td>
<td align="left">
<math>
{\hat{e}}_\varpi \frac{dF_\varpi}{dt} + F_\varpi \frac{d{\hat{e}}_\varpi}{dt} + {\hat{e}}_\varphi \frac{dF_\varphi}{dt} + F_\varphi \frac{d{\hat{e}}_\varphi}{dt} + {\hat{e}}_z \frac{dF_z}{dt} + F_z \frac{d{\hat{e}}_z}{dt}
</math>
</td>
</tr>
<tr>
<td align="right">
&nbsp;
</td>
<td align="center">
=
</td>
<td align="left">
<math>
{\hat{e}}_\varpi \biggl[ \frac{dF_\varpi}{dt} -  F_\varphi \dot\varphi  \biggr] + {\hat{e}}_\varphi \biggl[ \frac{dF_\varphi}{dt} + F_\varpi \dot\varphi \biggr]  + {\hat{e}}_z \frac{dF_z}{dt} ;
</math>
</td>
</tr>
<tr>
<td align="right">
<math>
\vec{v} = \frac{d\vec{x}}{dt} = \frac{d}{dt}\biggl[ \hat{e}_\varpi \varpi + \hat{e}_z z \biggr]
</math>
</td>
<td align="center">
=
</td>
<td align="left">
<math>
{\hat{e}}_\varpi \biggl[ \dot\varpi \biggr] +
{\hat{e}}_\varphi \biggl[ \varpi \dot\varphi \biggr]  +
{\hat{e}}_z \biggl[ \dot{z} \biggr] .
</math>
</td>
</tr>
</table>
</ol>


=See Also=
=See Also=




{{LSU_HBook_footer}}
{{LSU_HBook_footer}}

Revision as of 23:21, 19 July 2019

Axisymmetric Configurations (Part I)

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

If the self-gravitating configuration that we wish to construct is axisymmetric, then the coupled set of multidimensional, partial differential equations that serve as our principal governing equations can be simplified to a coupled set of two-dimensional PDEs.

Cylindrical Coordinate Base

Here we choose to …

  1. Express each of the multidimensional spatial operators in cylindrical coordinates (<math>\varpi, \varphi, z</math>) (see, for example, the Wikipedia discussion of vector calculus formulae in cylindrical coordinates) and set to zero all spatial derivatives that are taken with respect to the angular coordinate <math>\varphi</math>:

    Spatial Operators in Cylindrical Coordinates

    <math> \nabla f </math>

    =

    <math> {\hat{e}}_\varpi \biggl[ \frac{\partial f}{\partial\varpi} \biggr] + {\hat{e}}_\varphi \cancel{\biggl[ \frac{1}{\varpi} \frac{\partial f}{\partial\varphi} \biggr]} + {\hat{e}}_z \biggl[ \frac{\partial f}{\partial z} \biggr] ; </math>

    <math> \nabla^2 f </math>

    =

    <math> \frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial f}{\partial\varpi} \biggr] + \cancel{\frac{1}{\varpi^2} \frac{\partial^2 f}{\partial\varphi^2}} + \frac{\partial^2 f}{\partial z^2} ; </math>

    <math> (\vec{v}\cdot\nabla)f </math>

    =

    <math> \biggl[ v_\varpi \frac{\partial f}{\partial\varpi} \biggr] + \cancel{\biggl[ \frac{v_\varphi}{\varpi} \frac{\partial f}{\partial\varphi} \biggr]} + \biggl[ v_z \frac{\partial f}{\partial z} \biggr] ; </math>

    <math> \nabla \cdot \vec{F} </math>

    =

    <math> \frac{1}{\varpi} \frac{\partial (\varpi F_\varpi)}{\partial\varpi} + \cancel{\frac{1}{\varpi} \frac{\partial F_\varphi}{\partial\varphi}} + \frac{\partial F_z}{\partial z} ; </math>

  2. Express all vector time-derivatives in cylindrical coordinates:

    Vector Time-Derivatives in Cylindrical Coordinates

    <math> \frac{d}{dt}\vec{F} </math>

    =

    <math> {\hat{e}}_\varpi \frac{dF_\varpi}{dt} + F_\varpi \frac{d{\hat{e}}_\varpi}{dt} + {\hat{e}}_\varphi \frac{dF_\varphi}{dt} + F_\varphi \frac{d{\hat{e}}_\varphi}{dt} + {\hat{e}}_z \frac{dF_z}{dt} + F_z \frac{d{\hat{e}}_z}{dt} </math>

     

    =

    <math> {\hat{e}}_\varpi \biggl[ \frac{dF_\varpi}{dt} - F_\varphi \dot\varphi \biggr] + {\hat{e}}_\varphi \biggl[ \frac{dF_\varphi}{dt} + F_\varpi \dot\varphi \biggr] + {\hat{e}}_z \frac{dF_z}{dt} ; </math>

    <math> \vec{v} = \frac{d\vec{x}}{dt} = \frac{d}{dt}\biggl[ \hat{e}_\varpi \varpi + \hat{e}_z z \biggr] </math>

    =

    <math> {\hat{e}}_\varpi \biggl[ \dot\varpi \biggr] + {\hat{e}}_\varphi \biggl[ \varpi \dot\varphi \biggr] + {\hat{e}}_z \biggl[ \dot{z} \biggr] . </math>


Governing Equations

Introducing the above expressions into the principal governing equations gives,

Equation of Continuity

<math>\frac{d\rho}{dt} + \frac{\rho}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \varpi \dot\varpi \biggr] + \rho \frac{\partial}{\partial z} \biggl[ \rho \dot{z} \biggr] = 0 </math>


Euler Equation

<math> {\hat{e}}_\varpi \biggl[ \frac{d \dot\varpi}{dt} - \varpi {\dot\varphi}^2 \biggr] + {\hat{e}}_\varphi \biggl[ \frac{d(\varpi\dot\varphi)}{dt} + \dot\varpi \dot\varphi \biggr] + {\hat{e}}_z \biggl[ \frac{d \dot{z}}{dt} \biggr] = - {\hat{e}}_\varpi \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial\varpi} + \frac{\partial \Phi}{\partial\varpi}\biggr] - {\hat{e}}_z \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial z} + \frac{\partial \Phi}{\partial z} \biggr] </math>


Adiabatic Form of the
First Law of Thermodynamics

<math>~\frac{d\epsilon}{dt} + P \frac{d}{dt} \biggl(\frac{1}{\rho}\biggr) = 0</math>


Poisson Equation

<math> \frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial \Phi}{\partial\varpi} \biggr] + \frac{\partial^2 \Phi}{\partial z^2} = 4\pi G \rho . </math>

Conservation of Specific Angular Momentum

The <math>\hat{e}_\varphi</math> component of the Euler equation leads to a statement of conservation of specific angular momentum, <math>j</math>, as follows.

<math> \frac{d(\varpi\dot\varphi)}{dt} + \dot\varpi \dot\varphi = \frac{1}{\varpi}\biggl[ \varpi \frac{d(\varpi\dot\varphi)}{dt} + \varpi \dot\varpi \dot\varphi \biggr] =0 </math>

<math> \Rightarrow ~~~~~ \frac{d(\varpi^2 \dot\varphi)}{dt} = 0 </math>

<math> \Rightarrow ~~~~~ j(\varpi,z) \equiv \varpi^2 \dot\varphi = \mathrm{constant} ~(\mathrm{i.e.,}~\mathrm{independent~of~time}) </math>

So, for axisymmetric configurations, the <math>\hat{e}_\varpi</math> and <math>\hat{e}_z</math> components of the Euler equation become, respectively,

<math> \frac{d \dot\varpi}{dt} - \frac{j^2}{\varpi^3} </math>

=

<math> - \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial\varpi} + \frac{\partial \Phi}{\partial\varpi}\biggr] </math>

<math> \frac{d \dot{z}}{dt} </math>

=

<math> - \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial z} + \frac{\partial \Phi}{\partial z} \biggr] </math>


Eulerian Formulation

Each of the above simplified governing equations has been written in terms of Lagrangian time derivatives. An Eulerian formulation of each equation can be obtained by replacing each Lagrangian time derivative by its Eulerian counterpart. Specifically, for any scalar function, <math>f</math>,


<math> \frac{df}{dt} \rightarrow \frac{\partial f}{\partial t} + (\vec{v}\cdot \nabla)f = \frac{\partial f}{\partial t} + \biggl[ \dot\varpi \frac{\partial f}{\partial\varpi} \biggr] + \biggl[ \dot{z} \frac{\partial f}{\partial z} \biggr] . </math>


Spherical Coordinate Base

Here we choose to …

  1. Express each of the multidimensional spatial operators in spherical coordinates (<math>r, \theta, \varphi</math>) (see, for example, the Wikipedia discussion of vector calculus formulae in spherical coordinates) and set to zero all spatial derivatives that are taken with respect to the angular coordinate <math>\varphi</math>:

    Spatial Operators in Spherical Coordinates

    <math> \nabla f </math>

    =

    <math> {\hat{e}}_r \biggl[ \frac{\partial f}{\partial r} \biggr] + {\hat{e}}_\theta \biggl[ \frac{1}{r} \frac{\partial f}{\partial\theta} \biggr] + {\hat{e}}_\varphi \cancel{\biggl[\frac{1}{r\sin\theta}~ \frac{\partial f}{\partial \varphi} \biggr]} ; </math>

    <math> \nabla^2 f </math>

    =

    <math> \frac{1}{r^2} \frac{\partial }{\partial r} \biggl[ r^2 \frac{\partial f}{\partial r} \biggr] + \frac{1}{r^2 \sin\theta} \frac{\partial }{\partial \theta}\biggl(\sin\theta \frac{\partial f}{\partial\theta}\biggr) + \cancel{ \biggl[\frac{1}{r^2 \sin^2\theta} \frac{\partial^2 f}{\partial \varphi^2} \biggr]} ; </math>

    <math> (\vec{v}\cdot\nabla)f </math>

    =

    <math> \biggl[ v_r \frac{\partial f}{\partial r} \biggr] + \biggl[ \frac{v_\theta}{r} \frac{\partial f}{\partial\theta} \biggr] + \cancel{\biggl[\frac{v_\varphi}{r\sin\theta}~ \frac{\partial f}{\partial \varphi} \biggr]} ; </math>

    <math> \nabla \cdot \vec{F} </math>

    =

    <math> \frac{1}{r^2} \frac{\partial (r^2 F_r)}{\partial r} + \frac{1}{r\sin\theta} \frac{\partial }{\partial\theta} \biggl( F_\theta \sin\theta \biggr) + \cancel{ \biggl[ \frac{1}{r\sin\theta}~\frac{\partial F_\varphi}{\partial \varphi} \biggr]} ; </math>

  2. Express all vector time-derivatives in cylindrical coordinates:

    Vector Time-Derivatives in Cylindrical Coordinates

    <math> \frac{d}{dt}\vec{F} </math>

    =

    <math> {\hat{e}}_\varpi \frac{dF_\varpi}{dt} + F_\varpi \frac{d{\hat{e}}_\varpi}{dt} + {\hat{e}}_\varphi \frac{dF_\varphi}{dt} + F_\varphi \frac{d{\hat{e}}_\varphi}{dt} + {\hat{e}}_z \frac{dF_z}{dt} + F_z \frac{d{\hat{e}}_z}{dt} </math>

     

    =

    <math> {\hat{e}}_\varpi \biggl[ \frac{dF_\varpi}{dt} - F_\varphi \dot\varphi \biggr] + {\hat{e}}_\varphi \biggl[ \frac{dF_\varphi}{dt} + F_\varpi \dot\varphi \biggr] + {\hat{e}}_z \frac{dF_z}{dt} ; </math>

    <math> \vec{v} = \frac{d\vec{x}}{dt} = \frac{d}{dt}\biggl[ \hat{e}_\varpi \varpi + \hat{e}_z z \biggr] </math>

    =

    <math> {\hat{e}}_\varpi \biggl[ \dot\varpi \biggr] + {\hat{e}}_\varphi \biggl[ \varpi \dot\varphi \biggr] + {\hat{e}}_z \biggl[ \dot{z} \biggr] . </math>


See Also

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation