Difference between revisions of "User:Tohline/AxisymmetricConfigurations/PGE"

From VistrailsWiki
Jump to navigation Jump to search
(→‎Axisymmetric Configurations: Fill out discussion)
Line 4: Line 4:


=Axisymmetric Configurations=
=Axisymmetric Configurations=
==Strategy==


If the self-gravitating configuration that we wish to construct is axisymmetric, then the coupled set of multidimensional, partial differential equations that serve as our [[User:Tohline/PGE|principal governing equations]] can be simplified to a coupled set of two-dimensional PDEs.  Here we accomplish this by,
If the self-gravitating configuration that we wish to construct is axisymmetric, then the coupled set of multidimensional, partial differential equations that serve as our [[User:Tohline/PGE|principal governing equations]] can be simplified to a coupled set of two-dimensional PDEs.  Here we accomplish this by,
Line 145: Line 147:
</ol>
</ol>


==Governing Equations==


After making this simplification, our governing equations become,
Introducing the above expressions into the principal governing equations gives,


<div align="center">
<div align="center">
<span id="Continuity"><font color="#770000">'''Equation of Continuity'''</font></span><br />
<span id="Continuity"><font color="#770000">'''Equation of Continuity'''</font></span><br />


<math>\frac{d\rho}{dt} + \rho \biggl[\frac{1}{r^2}\frac{d(r^2 v_r)}{dr} \biggr] = 0 </math><br />
<math>\frac{d\rho}{dt} + \frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho \varpi \dot\varpi \biggr]
+ \frac{\partial}{\partial z} \biggl[ \rho \dot{z} \biggr] = 0 </math><br />




<span id="PGE:Euler"><font color="#770000">'''Euler Equation'''</font></span><br />
<span id="PGE:Euler">
<font color="#770000">'''Euler Equation'''</font>
</span><br />


<math>\frac{dv_r}{dt} = - \frac{1}{\rho}\frac{dP}{dr} - \frac{d\Phi}{dr} </math><br />
<math>
{\hat{e}}_\varpi \biggl[ \frac{d \dot\varpi}{dt} -  \varpi {\dot\varphi}^2  \biggr] + {\hat{e}}_\varphi \biggl[ \frac{d(\varpi\dot\varphi)}{dt} + \dot\varpi \dot\varphi \biggr]  + {\hat{e}}_z \biggl[ \frac{d \dot{z}}{dt} \biggr] = -
{\hat{e}}_\varpi \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial\varpi} + \frac{\partial \Phi}{\partial\varpi}\biggr] - {\hat{e}}_z \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial z} + \frac{\partial \Phi}{\partial z} \biggr]
</math><br />




Line 168: Line 177:
<span id="PGE:Poisson"><font color="#770000">'''Poisson Equation'''</font></span><br />
<span id="PGE:Poisson"><font color="#770000">'''Poisson Equation'''</font></span><br />


<math>\frac{1}{r^2} \biggl[\frac{d }{dr} \biggl( r^2 \frac{d \Phi}{dr} \biggr) \biggr] = 4\pi G \rho </math><br />
<math>
\frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial \Phi}{\partial\varpi} \biggr] + \frac{\partial^2 \Phi}{\partial z^2} = 4\pi G \rho .
</math><br />
</div>
</div>
The <math>\hat{e}_\varphi</math> component of the Euler equation leads to a statement of conservation of angular momentum, as follows. 
<math>
\frac{d(\varpi\dot\varphi)}{dt} + \dot\varpi \dot\varphi  = 0
</math><br />
<math>
\Rightarrow ~~~~~ \frac{d()}{dt} = 0
</math><br />


=See Also=
=See Also=

Revision as of 00:57, 16 April 2010

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Axisymmetric Configurations

Strategy

If the self-gravitating configuration that we wish to construct is axisymmetric, then the coupled set of multidimensional, partial differential equations that serve as our principal governing equations can be simplified to a coupled set of two-dimensional PDEs. Here we accomplish this by,

  1. Expressing each of the multidimensional spatial operators in cylindrical coordinates (<math>\varpi, \varphi, z</math>) (see, for example, the Wikipedia discussion of vector calculus formulae in cylindrical coordinates) and setting to zero all spatial derivatives that are taken with respect to the angular coordinate <math>\varphi</math>:

    Spatial Operators in Cylindrical Coordinates

    <math> \nabla f </math>

    =

    <math> {\hat{e}}_\varpi \biggl[ \frac{\partial f}{\partial\varpi} \biggr] + {\hat{e}}_\varphi \cancel{\biggl[ \frac{1}{\varpi} \frac{\partial f}{\partial\varphi} \biggr]} + {\hat{e}}_z \biggl[ \frac{\partial f}{\partial z} \biggr] ; </math>

    <math> \nabla^2 f </math>

    =

    <math> \frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial f}{\partial\varpi} \biggr] + \cancel{\frac{1}{\varpi^2} \frac{\partial^2 f}{\partial\varphi^2}} + \frac{\partial^2 f}{\partial z^2} ; </math>

    <math> (\vec{v}\cdot\nabla)f </math>

    =

    <math> \biggl[ v_\varpi \frac{\partial f}{\partial\varpi} \biggr] + \cancel{\biggl[ \frac{v_\varphi}{\varpi} \frac{\partial f}{\partial\varphi} \biggr]} + \biggl[ v_z \frac{\partial f}{\partial z} \biggr] ; </math>

    <math> \nabla \cdot \vec{F} </math>

    =

    <math> \frac{1}{\varpi} \frac{\partial (\varpi F_\varpi)}{\partial\varpi} + \cancel{\frac{1}{\varpi} \frac{\partial F_\varphi}{\partial\varphi}} + \frac{\partial F_z}{\partial z} ; </math>

  2. Expressing all vector time-derivatives in cylindrical coordinates:

    Vector Time-Derivatives in Cylindrical Coordinates

    <math> \frac{d}{dt}\vec{F} </math>

    =

    <math> {\hat{e}}_\varpi \frac{dF_\varpi}{dt} + F_\varpi \frac{d{\hat{e}}_\varpi}{dt} + {\hat{e}}_\varphi \frac{dF_\varphi}{dt} + F_\varphi \frac{d{\hat{e}}_\varphi}{dt} + {\hat{e}}_z \frac{dF_z}{dt} + F_z \frac{d{\hat{e}}_z}{dt} </math>

     

    =

    <math> {\hat{e}}_\varpi \biggl[ \frac{dF_\varpi}{dt} - F_\varphi \dot\varphi \biggr] + {\hat{e}}_\varphi \biggl[ \frac{dF_\varphi}{dt} + F_\varpi \dot\varphi \biggr] + {\hat{e}}_z \frac{dF_z}{dt} ; </math>

    <math> \vec{v} = \frac{d\vec{x}}{dt} = \frac{d}{dt}\biggl[ \hat{e}_\varpi \varpi + \hat{e}_z z \biggr] </math>

    =

    <math> {\hat{e}}_\varpi \biggl[ \dot\varpi \biggr] + {\hat{e}}_\varphi \biggl[ \varpi \dot\varphi \biggr] + {\hat{e}}_z \biggl[ \dot{z} \biggr] . </math>


Governing Equations

Introducing the above expressions into the principal governing equations gives,

Equation of Continuity

<math>\frac{d\rho}{dt} + \frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho \varpi \dot\varpi \biggr] + \frac{\partial}{\partial z} \biggl[ \rho \dot{z} \biggr] = 0 </math>


Euler Equation

<math> {\hat{e}}_\varpi \biggl[ \frac{d \dot\varpi}{dt} - \varpi {\dot\varphi}^2 \biggr] + {\hat{e}}_\varphi \biggl[ \frac{d(\varpi\dot\varphi)}{dt} + \dot\varpi \dot\varphi \biggr] + {\hat{e}}_z \biggl[ \frac{d \dot{z}}{dt} \biggr] = - {\hat{e}}_\varpi \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial\varpi} + \frac{\partial \Phi}{\partial\varpi}\biggr] - {\hat{e}}_z \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial z} + \frac{\partial \Phi}{\partial z} \biggr] </math>


Adiabatic Form of the
First Law of Thermodynamics

<math>~\frac{d\epsilon}{dt} + P \frac{d}{dt} \biggl(\frac{1}{\rho}\biggr) = 0</math>


Poisson Equation

<math> \frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial \Phi}{\partial\varpi} \biggr] + \frac{\partial^2 \Phi}{\partial z^2} = 4\pi G \rho . </math>

The <math>\hat{e}_\varphi</math> component of the Euler equation leads to a statement of conservation of angular momentum, as follows.

<math> \frac{d(\varpi\dot\varphi)}{dt} + \dot\varpi \dot\varphi = 0 </math>
<math> \Rightarrow ~~~~~ \frac{d()}{dt} = 0 </math>

See Also

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation