Difference between revisions of "User:Tohline/AxisymmetricConfigurations/PGE"

From VistrailsWiki
Jump to navigation Jump to search
(Begin intro to axisymmetric configurations)
 
(→‎Axisymmetric Configurations: More development of introductory section)
Line 5: Line 5:
=Axisymmetric Configurations=
=Axisymmetric Configurations=


If the self-gravitating configuration that we wish to construct is axisymmetric, then the coupled set of multidimensional, partial differential equations that serve as our [[User:Tohline/PGE|principal governing equations]] can be simplified to a coupled set of one-dimensional, ordinary differential equationsThis is accomplished by expressing each of the multidimensional spatial operators &#8212; gradient (<math>\nabla</math>), divergence (<math>\nabla\cdot</math>), and Laplacian (<math>\nabla^2</math>) &#8212; in spherical coordinates (<math>r, \theta, \varphi</math>) (see, for example, the [http://en.wikipedia.org/wiki/Spherical_coordinate_system#Integration_and_differentiation_in_spherical_coordinates Wikipedia discussion of integration and differentiation in spherical coordinates]) then setting to zero all derivatives that are taken with respect to the angular coordinates <math>\theta</math> and <math>\varphi</math>After making this simplification, our governing equations become,
If the self-gravitating configuration that we wish to construct is axisymmetric, then the coupled set of multidimensional, partial differential equations that serve as our [[User:Tohline/PGE|principal governing equations]] can be simplified to a coupled set of two-dimensional PDEsHere we accomplish this by,
 
 
# Expressing the vector time-derivative and each of the multidimensional spatial operators in cylindrical coordinates (<math>\varpi, \varphi, z</math>) (see, for example, the [http://en.wikipedia.org/wiki/Del_in_cylindrical_and_spherical_coordinates Wikipedia discussion of vector calculus formulae in cylindrical coordinates]):
 
<div align="center">
<math>
\nabla f = {\hat{e}}_\varpi \biggl[ \frac{\partial f}{\partial\varpi} \biggr] + {\hat{e}}_\varphi \biggl[ \frac{1}{\varpi} \frac{\partial f}{\partial\varphi} \biggr] +  {\hat{e}}_z \biggl[ \frac{\partial f}{\partial z} \biggr] ;
</math><br />
 
<math>
\nabla \cdot \vec{F} = \frac{1}{\varpi} \frac{\partial (\varpi F_\varpi)}{\partial\varpi} + \frac{1}{\varpi} \frac{\partial F_\varphi}{\partial\varphi} + \frac{\partial F_z}{\partial z} ;
</math><br />
 
<math>
\nabla^2 f = \frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial f}{\partial\varpi} \biggr] + \frac{1}{\varpi^2} \frac{\partial^2 f}{\partial\varphi^2} + \frac{\partial^2 f}{\partial z^2} ;
</math><br />
 
<math>
\frac{d}{dt}\vec{F} = {\hat{e}}_\varpi \frac{dF_\varpi}{dt} + F_\varpi \frac{d{\hat{e}}_\varpi}{dt} + {\hat{e}}_\varphi \frac{dF_\varphi}{dt} + F_\varphi \frac{d{\hat{e}}_\varphi}{dt} + {\hat{e}}_z \frac{dF_z}{dt} + F_z \frac{d{\hat{e}}_z}{dt};
</math>
 
</div>
 
# Setting to zero all derivatives that are taken with respect to the angular coordinate <math>\varphi</math>:
 
 
 
After making this simplification, our governing equations become,


<div align="center">
<div align="center">
Line 29: Line 57:
<math>\frac{1}{r^2} \biggl[\frac{d }{dr} \biggl( r^2 \frac{d \Phi}{dr} \biggr) \biggr] = 4\pi G \rho </math><br />
<math>\frac{1}{r^2} \biggl[\frac{d }{dr} \biggl( r^2 \frac{d \Phi}{dr} \biggr) \biggr] = 4\pi G \rho </math><br />
</div>
</div>


=See Also=
=See Also=

Revision as of 00:05, 4 April 2010

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Axisymmetric Configurations

If the self-gravitating configuration that we wish to construct is axisymmetric, then the coupled set of multidimensional, partial differential equations that serve as our principal governing equations can be simplified to a coupled set of two-dimensional PDEs. Here we accomplish this by,


  1. Expressing the vector time-derivative and each of the multidimensional spatial operators in cylindrical coordinates (<math>\varpi, \varphi, z</math>) (see, for example, the Wikipedia discussion of vector calculus formulae in cylindrical coordinates):

<math> \nabla f = {\hat{e}}_\varpi \biggl[ \frac{\partial f}{\partial\varpi} \biggr] + {\hat{e}}_\varphi \biggl[ \frac{1}{\varpi} \frac{\partial f}{\partial\varphi} \biggr] + {\hat{e}}_z \biggl[ \frac{\partial f}{\partial z} \biggr] ; </math>

<math> \nabla \cdot \vec{F} = \frac{1}{\varpi} \frac{\partial (\varpi F_\varpi)}{\partial\varpi} + \frac{1}{\varpi} \frac{\partial F_\varphi}{\partial\varphi} + \frac{\partial F_z}{\partial z} ; </math>

<math> \nabla^2 f = \frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial f}{\partial\varpi} \biggr] + \frac{1}{\varpi^2} \frac{\partial^2 f}{\partial\varphi^2} + \frac{\partial^2 f}{\partial z^2} ; </math>

<math> \frac{d}{dt}\vec{F} = {\hat{e}}_\varpi \frac{dF_\varpi}{dt} + F_\varpi \frac{d{\hat{e}}_\varpi}{dt} + {\hat{e}}_\varphi \frac{dF_\varphi}{dt} + F_\varphi \frac{d{\hat{e}}_\varphi}{dt} + {\hat{e}}_z \frac{dF_z}{dt} + F_z \frac{d{\hat{e}}_z}{dt}; </math>

  1. Setting to zero all derivatives that are taken with respect to the angular coordinate <math>\varphi</math>:


After making this simplification, our governing equations become,

Equation of Continuity

<math>\frac{d\rho}{dt} + \rho \biggl[\frac{1}{r^2}\frac{d(r^2 v_r)}{dr} \biggr] = 0 </math>


Euler Equation

<math>\frac{dv_r}{dt} = - \frac{1}{\rho}\frac{dP}{dr} - \frac{d\Phi}{dr} </math>


Adiabatic Form of the
First Law of Thermodynamics

<math>~\frac{d\epsilon}{dt} + P \frac{d}{dt} \biggl(\frac{1}{\rho}\biggr) = 0</math>


Poisson Equation

<math>\frac{1}{r^2} \biggl[\frac{d }{dr} \biggl( r^2 \frac{d \Phi}{dr} \biggr) \biggr] = 4\pi G \rho </math>

See Also

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation