Difference between revisions of "User:Tohline/AxisymmetricConfigurations/PGE"

From VistrailsWiki
Jump to navigation Jump to search
(→‎Axisymmetric Configurations: Introduce "cancel" stroke in LaTeX)
 
(43 intermediate revisions by the same user not shown)
Line 1: Line 1:
<!-- __FORCETOC__ will force the creation of a Table of Contents -->
<!-- __FORCETOC__ will force the creation of a Table of Contents -->
<!-- __NOTOC__ will force TOC off -->
<!-- __NOTOC__ will force TOC off -->
=Axisymmetric Configurations (Governing Equations)=
{{LSU_HBook_header}}
{{LSU_HBook_header}}
If the self-gravitating configuration that we wish to construct is axisymmetric, then the coupled set of multidimensional, partial differential equations that serve as our [[User:Tohline/PGE|principal governing equations]] can be simplified to a coupled set of two-dimensional PDEs. 


=Axisymmetric Configurations=
==Cylindrical Coordinate Base==
 
Here we choose to &hellip;
If the self-gravitating configuration that we wish to construct is axisymmetric, then the coupled set of multidimensional, partial differential equations that serve as our [[User:Tohline/PGE|principal governing equations]] can be simplified to a coupled set of two-dimensional PDEs.  Here we accomplish this by,


<ol>
<ol>
<li>Expressing each of the multidimensional spatial operators in cylindrical coordinates (<math>\varpi, \varphi, z</math>)  (see, for example, the [http://en.wikipedia.org/wiki/Del_in_cylindrical_and_spherical_coordinates Wikipedia discussion of vector calculus formulae in cylindrical coordinates]) and setting to zero all spatial derivatives that are taken with respect to the angular coordinate <math>\varphi</math>:
<li>Express each of the multidimensional spatial operators in cylindrical coordinates (<math>\varpi, \varphi, z</math>)  (see, for example, the [http://en.wikipedia.org/wiki/Del_in_cylindrical_and_spherical_coordinates Wikipedia discussion of vector calculus formulae in cylindrical coordinates]) and set to zero all spatial derivatives that are taken with respect to the angular coordinate <math>\varphi</math>:


<table align="center" border="0" cellpadding="5">
<table align="center" border="0" cellpadding="5">
<tr>
<tr>
<td colspan="3" align="center">
<td colspan="3" align="center">
<font color="#770000"><b>3D Operators in Cylindrical Coordinates</b></font>
<font color="#770000"><b>Spatial Operators in Cylindrical Coordinates</b></font>
</td>
</td>
</tr>
</tr>
Line 31: Line 32:
</math>
</math>
</td>
</td>
</tr>
<tr>
  <td align="center" colspan="3">
[<b>[[User:Tohline/Appendix/References#BT87|<font color="red">BT87</font>]]</b>], p. 649, Eq. (1B-37)
  </td>
</tr>
</tr>


Line 47: Line 53:
</math>
</math>
</td>
</td>
</tr>
<tr>
  <td align="center" colspan="3">
[<b>[[User:Tohline/Appendix/References#BT87|<font color="red">BT87</font>]]</b>], p. 650, Eq. (1B-50)
  </td>
</tr>
</tr>


Line 79: Line 90:
<math>
<math>
\frac{1}{\varpi} \frac{\partial (\varpi F_\varpi)}{\partial\varpi} + \cancel{\frac{1}{\varpi} \frac{\partial F_\varphi}{\partial\varphi}} + \frac{\partial F_z}{\partial z} ;
\frac{1}{\varpi} \frac{\partial (\varpi F_\varpi)}{\partial\varpi} + \cancel{\frac{1}{\varpi} \frac{\partial F_\varphi}{\partial\varphi}} + \frac{\partial F_z}{\partial z} ;
</math>
</td>
</tr>
<tr>
  <td align="center" colspan="3">
[<b>[[User:Tohline/Appendix/References#BT87|<font color="red">BT87</font>]]</b>], p. 650, Eq. (1B-45)
  </td>
</tr>
</table>
<table border="0" cellpadding="5" align="center">
<tr>
<td align="right">
<math>
(\vec{F} \cdot \nabla )\vec{B}
</math>
</td>
<td align="center">
=
</td>
<td align="left">
<math>
\hat{e}_\varpi \biggl[ F_\varpi \frac{\partial B_\varpi}{\partial\varpi} + \cancel{\frac{F_\varphi}{\varpi} \frac{\partial B_\varpi}{\partial\varphi}} + F_z \frac{\partial B_\varpi}{\partial z} - \frac{F_\varphi B_\varphi}{\varpi}  \biggr]
+ \hat{e}_\varphi \biggl[ F_\varpi \frac{\partial B_\varphi}{\partial \varpi} + \cancel{ \frac{F_\varphi}{\varpi} \frac{\partial B_\varphi}{\partial\varphi}} + F_z \frac{\partial B_\varphi}{\partial z} + \frac{F_\varphi B_\varpi}{\varpi}  \biggr]
+ \hat{e}_z \biggl[ F_\varpi \frac{\partial B_z}{\partial\varpi} +\cancel{ \frac{F_\varphi}{\varpi} \frac{\partial B_z}{\partial \varphi}} + F_z \frac{\partial B_z}{\partial z} \biggr] \, .
</math>
</td>
</tr>
<tr>
  <td align="center" colspan="3">
[<b>[[User:Tohline/Appendix/References#BT87|<font color="red">BT87</font>]]</b>], p. 651, Eq. (1B-54)
  </td>
</tr>
</table>
<span id="CYLconvectiveOperator">From this last expression &#8212; the so-called ''convective operator'' &#8212; we conclude as well that, for axisymmetric systems,</span>
<table border="0" cellpadding="5" align="center">
<tr>
<td align="right">
<math>
(\vec{v} \cdot \nabla )\vec{v}
</math>
</td>
<td align="center">
=
</td>
<td align="left">
<math>
\hat{e}_\varpi \biggl[ v_\varpi \frac{\partial v_\varpi}{\partial\varpi} + v_z \frac{\partial v_\varpi}{\partial z} - \frac{v_\varphi v_\varphi}{\varpi}  \biggr]
+ \hat{e}_\varphi \biggl[ v_\varpi \frac{\partial v_\varphi}{\partial \varpi}  + v_z \frac{\partial v_\varphi}{\partial z} + \frac{v_\varphi v_\varpi}{\varpi}  \biggr]
+ \hat{e}_z \biggl[ v_\varpi \frac{\partial v_z}{\partial\varpi}  + v_z \frac{\partial v_z}{\partial z} \biggr] \, .
</math>
</math>
</td>
</td>
Line 84: Line 148:
</table>
</table>


<li>Expressing all vector time-derivatives and in cylindrical coordinates:
 
<li>Express all vector time-derivatives in cylindrical coordinates:


<table align="center" border="0" cellpadding="5">
<table align="center" border="0" cellpadding="5">
<tr>
<tr>
<td colspan="3" align="center">
<td colspan="3" align="center">
<font color="#770000"><b>3D Operators in Cylindrical Coordinates</b></font>
<font color="#770000"><b>Vector Time-Derivatives in Cylindrical Coordinates</b></font>
</td>
</td>
</tr>
</tr>
Line 139: Line 204:
</math>
</math>
</td>
</td>
</tr>
<tr>
  <td align="center" colspan="3">
[<b>[[User:Tohline/Appendix/References#BT87|<font color="red">BT87</font>]]</b>], p. 647, Eq. (1B-23)
  </td>
</tr>
</tr>
</table>
</table>




<li>Setting to zero all derivatives that are taken with respect to the angular coordinate <math>\varphi</math>:  
</ol>
 
===Governing Equations (CYL.)===
 
Introducing the above expressions into the [[User:Tohline/PGE|principal governing equations]] gives,
 
<div align="center">
<span id="Continuity"><font color="#770000">'''Equation of Continuity'''</font></span><br />
 
<math>\frac{d\rho}{dt} + \frac{\rho}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \varpi \dot\varpi \biggr]
+ \rho \frac{\partial}{\partial z} \biggl[ \rho \dot{z} \biggr] = 0 </math><br />
 
 
<span id="PGE:Euler">
<font color="#770000">'''Euler Equation'''</font>
</span><br />
 
<math>
{\hat{e}}_\varpi \biggl[ \frac{d \dot\varpi}{dt} -  \varpi {\dot\varphi}^2  \biggr] + {\hat{e}}_\varphi \biggl[ \frac{d(\varpi\dot\varphi)}{dt} + \dot\varpi \dot\varphi \biggr]  + {\hat{e}}_z \biggl[ \frac{d \dot{z}}{dt} \biggr] = -
{\hat{e}}_\varpi \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial\varpi} + \frac{\partial \Phi}{\partial\varpi}\biggr] -  {\hat{e}}_z \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial z} + \frac{\partial \Phi}{\partial z} \biggr]
</math><br />
 
 
 
<span id="PGE:AdiabaticFirstLaw">Adiabatic Form of the<br />
<font color="#770000">'''First Law of Thermodynamics'''</font></span><br />
 
{{User:Tohline/Math/EQ_FirstLaw02}}
 
 
<span id="PGE:Poisson"><font color="#770000">'''Poisson Equation'''</font></span><br />
 
<math>
\frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial \Phi}{\partial\varpi} \biggr] + \frac{\partial^2 \Phi}{\partial z^2} = 4\pi G \rho .
</math><br />
</div>
 
===Conservation of Specific Angular Momentum (CYL.)===
 
The <math>\hat{e}_\varphi</math> component of the Euler equation leads to a statement of conservation of specific angular momentum, <math>j</math>, as follows. 
 
<div align="center">
<math>
\frac{d(\varpi\dot\varphi)}{dt} + \dot\varpi \dot\varphi  = \frac{1}{\varpi}\biggl[ \varpi \frac{d(\varpi\dot\varphi)}{dt} + \varpi \dot\varpi \dot\varphi \biggr] =0
</math><br />
 
<math>
\Rightarrow ~~~~~ \frac{d(\varpi^2 \dot\varphi)}{dt} = 0
</math><br />
 
<math>
\Rightarrow ~~~~~ j(\varpi,z) \equiv \varpi^2 \dot\varphi =  \mathrm{constant} ~(\mathrm{i.e.,}~\mathrm{independent~of~time})
</math><br />
</div>
 
 
<span id="RelevantCylindricalComponents">So, for axisymmetric configurations, the <math>\hat{e}_\varpi</math> and <math>\hat{e}_z</math> components of the Euler equation become, respectively,</span>
<table border="1" align="center" cellpadding="10"><tr><td align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right"><math>~{\hat{e}}_\varpi</math>: &nbsp; &nbsp;</td>
  <td align="right">
<math>
\frac{d \dot\varpi}{dt} -  \frac{j^2}{\varpi^3} 
</math>
  </td>
  <td align="center">
=
  </td>
  <td align="left">
<math>
- \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial\varpi} + \frac{\partial \Phi}{\partial\varpi}\biggr] 
</math>
  </td>
</tr>
<tr>
  <td align="right"><math>~{\hat{e}}_z</math>: &nbsp; &nbsp;</td>
  <td align="right">
<math>
\frac{d \dot{z}}{dt}
</math>
  </td>
  <td align="center">
=
  </td>
  <td align="left">
<math>
- \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial z} + \frac{\partial \Phi}{\partial z} \biggr]
</math>
  </td>
</tr>
</table>
</td></tr></table>
 
===Eulerian Formulation (CYL.)===
 
Each of the above simplified governing equations has been written in terms of Lagrangian time derivatives.  An Eulerian formulation of each equation can be obtained by replacing each Lagrangian time derivative by its Eulerian counterpart.  Specifically, for any scalar function, <math>f</math>,
 
 
<div align="center">
<math>
\frac{df}{dt} \rightarrow \frac{\partial f}{\partial t} + (\vec{v}\cdot \nabla)f =
\frac{\partial f}{\partial t} + \biggl[ \dot\varpi \frac{\partial f}{\partial\varpi} \biggr] +
\biggl[ \dot{z} \frac{\partial f}{\partial z} \biggr]  .
</math>
</div>
 
Making this substitution throughout the set of governing relations gives:
 
<div align="center">
<span id="Continuity"><font color="#770000">'''Equation of Continuity'''</font></span>
 
<math>\frac{\partial\rho}{\partial t} + \frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho \varpi \dot\varpi \biggr]
+ \frac{\partial}{\partial z} \biggl[ \rho \dot{z} \biggr] = 0 </math><br />
 
 
<span id="PGE:Euler">The Two Relevant Components of the<br />
<font color="#770000">'''Euler Equation'''</font>
</span>
<table border="0" cellpadding="5">
<tr>
  <td align="right"><math>~{\hat{e}}_\varpi</math>: &nbsp; &nbsp;</td>
  <td align="right">
<math>~
\frac{\partial \dot\varpi}{\partial t} + \biggl[ \dot\varpi \frac{\partial \dot\varpi}{\partial\varpi} \biggr] +
\biggl[ \dot{z} \frac{\partial \dot\varpi}{\partial z} \biggr] 
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial\varpi} + \frac{\partial \Phi}{\partial\varpi}\biggr] + \frac{j^2}{\varpi^3} 
</math>
  </td>
</tr>
<tr>
  <td align="right"><math>~{\hat{e}}_z</math>: &nbsp; &nbsp;</td>
  <td align="right">
<math>~
\frac{\partial \dot{z}}{\partial t} + \biggl[ \dot\varpi \frac{\partial \dot{z}}{\partial\varpi} \biggr] +
\biggl[ \dot{z} \frac{\partial \dot{z}}{\partial z} \biggr]
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial z} + \frac{\partial \Phi}{\partial z} \biggr]
</math>
  </td>
</tr>
</table>
 
<span id="PGE:AdiabaticFirstLaw">Adiabatic Form of the<br />
<font color="#770000">'''First Law of Thermodynamics'''</font></span><br />
 
<math>~
\biggl\{\frac{\partial \epsilon}{\partial t} + \biggl[ \dot\varpi \frac{\partial \epsilon}{\partial\varpi} \biggr] + \biggl[ \dot{z} \frac{\partial \epsilon}{\partial z} \biggr]\biggr\} +
P \biggl\{\frac{\partial }{\partial t}\biggl(\frac{1}{\rho}\biggr) +
\biggl[ \dot\varpi \frac{\partial }{\partial\varpi}\biggl(\frac{1}{\rho}\biggr) \biggr] +
\biggl[ \dot{z} \frac{\partial }{\partial z}\biggl(\frac{1}{\rho}\biggr) \biggr] \biggr\} = 0
</math>
 
 
<span id="PGE:Poisson"><font color="#770000">'''Poisson Equation'''</font></span><br />
 
<math>
\frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial \Phi}{\partial\varpi} \biggr] + \frac{\partial^2 \Phi}{\partial z^2} = 4\pi G \rho .
</math><br />
</div>
 
==Spherical Coordinate Base==
Here we choose to &hellip;
 
<ol>
<li>Express each of the multidimensional spatial operators in spherical coordinates (<math>r, \theta, \varphi</math>)  (see, for example, the [http://en.wikipedia.org/wiki/Del_in_cylindrical_and_spherical_coordinates Wikipedia discussion of vector calculus formulae in spherical coordinates]) and set to zero all spatial derivatives that are taken with respect to the angular coordinate <math>\varphi</math>:


<table align="center" border="0" cellpadding="5">
<table align="center" border="0" cellpadding="5">
<tr>
<tr>
<td colspan="3" align="center">
<td colspan="3" align="center">
<font color="#770000" size="+1"><b>2D Operators, Assuming Axisymmetric Conditions</b></font>
<font color="#770000"><b>Spatial Operators in Spherical Coordinates</b></font>
</td>
</td>
</tr>
</tr>
Line 163: Line 411:
<td align="left">
<td align="left">
<math>  
<math>  
{\hat{e}}_\varpi \biggl[ \frac{\partial f}{\partial\varpi} \biggr] + {\hat{e}}_z \biggl[ \frac{\partial f}{\partial z} \biggr] ;
{\hat{e}}_r \biggl[ \frac{\partial f}{\partial r} \biggr]
+ {\hat{e}}_\theta \biggl[ \frac{1}{r} \frac{\partial f}{\partial\theta} \biggr]  
+ {\hat{e}}_\varphi \cancel{\biggl[\frac{1}{r\sin\theta}~ \frac{\partial f}{\partial \varphi} \biggr]} ;
</math>
</math>
</td>
</td>
</tr>
<tr>
  <td align="center" colspan="3">
[<b>[[User:Tohline/Appendix/References#BT87|<font color="red">BT87</font>]]</b>], p. 649, Eq. (1B-38)
  </td>
</tr>
</tr>


Line 179: Line 434:
<td align="left">
<td align="left">
<math>
<math>
\frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial f}{\partial\varpi} \biggr] + \frac{\partial^2 f}{\partial z^2} ;
\frac{1}{r^2} \frac{\partial }{\partial r} \biggl[ r^2 \frac{\partial f}{\partial r} \biggr]
+ \frac{1}{r^2 \sin\theta} \frac{\partial }{\partial \theta}\biggl(\sin\theta \frac{\partial f}{\partial\theta}\biggr)
+ \cancel{ \biggl[\frac{1}{r^2 \sin^2\theta} \frac{\partial^2 f}{\partial \varphi^2} \biggr]} ;
</math>
</math>
</td>
</td>
</tr>
<tr>
  <td align="center" colspan="3">
[<b>[[User:Tohline/Appendix/References#BT87|<font color="red">BT87</font>]]</b>], p. 650, Eq. (1B-51)
  </td>
</tr>
</tr>


Line 192: Line 454:
<td align="center">  
<td align="center">  
=
=
</td>
<td align="left">
<math>
\biggl[ v_r \frac{\partial f}{\partial r} \biggr]
+ \biggl[ \frac{v_\theta}{r} \frac{\partial f}{\partial\theta} \biggr]
+ \cancel{\biggl[\frac{v_\varphi}{r\sin\theta}~ \frac{\partial f}{\partial \varphi} \biggr]} ;
</math>
</td>
</tr>
<tr>
<td align="right">
<math>
\nabla \cdot \vec{F}
</math>
</td>
<td align="center">
=
</td>
<td align="left">
<math>
\frac{1}{r^2} \frac{\partial (r^2 F_r)}{\partial r}
+ \frac{1}{r\sin\theta} \frac{\partial }{\partial\theta} \biggl( F_\theta \sin\theta \biggr)
+ \cancel{ \biggl[ \frac{1}{r\sin\theta}~\frac{\partial F_\varphi}{\partial \varphi} \biggr]} ;
</math>
</td>
</tr>
<tr>
  <td align="center" colspan="3">
[<b>[[User:Tohline/Appendix/References#BT87|<font color="red">BT87</font>]]</b>], p. 650, Eq. (1B-46)
  </td>
</tr>
</table>
<table border="0" cellpadding="5" align="center">
<tr>
<td align="right">
<math>
(\vec{F} \cdot \nabla )\vec{B}
</math>
</td>
<td align="center">
=
</td>
<td align="left">
<math>
\hat{e}_r \biggl[ F_r \frac{\partial B_r}{\partial r} + \frac{F_\theta}{r} \frac{\partial B_r}{\partial \theta} + \cancel{ \frac{F_\varphi}{r\sin\theta}  \frac{\partial B_r}{\partial \varphi} } - \frac{(F_\theta B_\theta + F_\varphi B_\varphi)}{r}\biggr]
</math>
</td>
</tr>
<tr>
<td align="right">
&nbsp;
</td>
<td align="center">
&nbsp;
</td>
<td align="left">
<math>
+ \hat{e}_\theta \biggl[ F_r  \frac{\partial B_\theta}{\partial r} + \frac{F_\theta}{r}  \frac{\partial B_\theta}{\partial \theta } + \cancel{ \frac{F_\varphi}{r\sin\theta}  \frac{\partial B_\theta}{\partial \varphi} }
+ \frac{F_\theta B_r}{r} - \frac{F_\varphi B_\varphi \cot\theta}{r} \biggr]
</math>
</td>
</tr>
<tr>
<td align="right">
&nbsp;
</td>
<td align="center">
&nbsp;
</td>
</td>
<td align="left">
<td align="left">
<math>
<math>
\biggl[ v_\varpi \frac{\partial f}{\partial\varpi} \biggr] +  
+ \hat{e}_\varphi \biggl[ F_r  \frac{\partial B_\varphi}{\partial r} + \frac{F_\theta}{r}  \frac{\partial B_\varphi}{\partial \theta} + \cancel{ \frac{F_\varphi}{r\sin\theta} \frac{\partial B_\varphi}{\partial \varphi} }
\biggl[ v_z \frac{\partial f}{\partial z} \biggr] ;
+ \frac{F_\varphi B_r}{r} + \frac{F_\varphi B_\theta \cot\theta}{r}  \biggr] \, .
</math>
</math>
</td>
</td>
</tr>
</tr>
<tr>
  <td align="center" colspan="3">
[<b>[[User:Tohline/Appendix/References#BT87|<font color="red">BT87</font>]]</b>], p. 651, Eq. (1B-55)
  </td>
</tr>
</table>
From this last expression &#8212; the so-called ''convective operator'' &#8212; we conclude as well that, for axisymmetric systems,
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
<td align="right">
<td align="right">
<math>
<math>
\nabla \cdot \vec{F}  
(\vec{v} \cdot \nabla )\vec{v}  
</math>
</math>
</td>
</td>
Line 212: Line 556:
<td align="left">
<td align="left">
<math>
<math>
\frac{1}{\varpi} \frac{\partial (\varpi F_\varpi)}{\partial\varpi} +  \frac{\partial F_z}{\partial z} ;
\hat{e}_r \biggl[ v_r \frac{\partial v_r}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_r}{\partial \theta}  - \frac{(v_\theta^2 + v_\varphi^2 )}{r}\biggr]
+ \hat{e}_\theta \biggl[ v_r  \frac{\partial v_\theta}{\partial r} + \frac{v_\theta}{r}  \frac{\partial v_\theta}{\partial \theta }
+ \frac{v_\theta v_r}{r} - \frac{v_\varphi^2 \cot\theta}{r} \biggr]
+ \hat{e}_\varphi \biggl[ v_r  \frac{\partial v_\varphi}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_\varphi}{\partial \theta}
+ \frac{v_\varphi v_r}{r} + \frac{v_\varphi v_\theta \cot\theta}{r} \biggr] \, .
</math>
</math>
</td>
</tr>
</table>
<li>Express all vector time-derivatives in spherical coordinates:
<table align="center" border="0" cellpadding="5">
<tr>
<td colspan="3" align="center">
<font color="#770000"><b>Vector Time-Derivatives in Spherical Coordinates</b></font>
</td>
</td>
</tr>
</tr>
Line 228: Line 586:
<td align="left">
<td align="left">
<math>
<math>
{\hat{e}}_\varpi \frac{dF_\varpi}{dt} + F_\varpi \frac{d{\hat{e}}_\varpi}{dt} + {\hat{e}}_\varphi \frac{dF_\varphi}{dt} + F_\varphi \frac{d{\hat{e}}_\varphi}{dt} + {\hat{e}}_z \frac{dF_z}{dt} + F_z \frac{d{\hat{e}}_z}{dt}
{\hat{e}}_r \frac{dF_r}{dt} + F_r \frac{d{\hat{e}}_r}{dt} + {\hat{e}}_\theta \frac{dF_\theta}{dt} + F_\theta \frac{d{\hat{e}}_\theta}{dt} + {\hat{e}}_\varphi \frac{dF_\varphi}{dt} + F_\varphi \frac{d{\hat{e}}_\varphi}{dt}
</math>
</td>
</tr>
 
<tr>
<td align="right">
&nbsp;
</td>
<td align="center">
=
</td>
<td align="left">
<math>
{\hat{e}}_r \frac{dF_r}{dt} + F_r \biggl[ {\hat{e}}_\theta \dot\theta + {\hat{e}}_\varphi \dot\varphi \sin\theta \biggr]
+ {\hat{e}}_\theta \frac{dF_\theta}{dt} + F_\theta \biggl[ - {\hat{e}}_r \dot\theta + {\hat{e}}_\varphi \dot\varphi \cos\theta \biggr]
+ {\hat{e}}_\varphi \frac{dF_\varphi}{dt} + F_\varphi \biggl[ - {\hat{e}}_r \dot\varphi \sin\theta - {\hat{e}}_\theta \dot\varphi \cos\theta \biggr]
</math>
</math>
</td>
</td>
Line 242: Line 616:
<td align="left">
<td align="left">
<math>
<math>
{\hat{e}}_\varpi \biggl[ \frac{dF_\varpi}{dt} -  F_\varphi \dot\varphi  \biggr] + {\hat{e}}_\varphi \biggl[ \frac{dF_\varphi}{dt} + F_\varpi \dot\varphi \biggr]  + {\hat{e}}_z \frac{dF_z}{dt} ;
{\hat{e}}_r \biggl[ \frac{dF_r}{dt} -  F_\theta \dot\theta - F_\varphi \dot\varphi \sin\theta \biggr]  
+ {\hat{e}}_\theta \biggl[ \frac{dF_\theta}{dt} + F_r \dot\theta - F_\varphi \dot\varphi \cos\theta \biggr]   
+ {\hat{e}}_\varphi \biggl[ \frac{dF_\varphi}{dt} + F_r \dot\varphi \sin\theta + F_\theta \dot\varphi \cos\theta \biggr] ;
</math>
</math>
</td>
</td>
Line 250: Line 626:
<td align="right">
<td align="right">
<math>
<math>
(\vec{v}\cdot\nabla)\vec{F}
\vec{v} = \frac{d\vec{x}}{dt}  
</math>
</math>
</td>
</td>
Line 258: Line 634:
<td align="left">
<td align="left">
<math>
<math>
{\hat{e}}_\varpi \biggl[ (\vec{v}\cdot\nabla)F_\varpi -  F_\varphi \dot\varphi \biggr] +
\frac{d}{dt}\biggl[ \hat{e}_r r \biggr]
{\hat{e}}_\varphi \biggl[ (\vec{v}\cdot\nabla)F_\varphi + F_\varpi \dot\varphi \biggr] +  
= {\hat{e}}_r \dot{r}
{\hat{e}}_z \biggl[ (\vec{v}\cdot\nabla)F_z \biggr] .
+ {\hat{e}}_\theta~ r \dot\theta  
+ {\hat{e}}_\varphi ~r \sin\theta ~ \dot\varphi  .
</math>
</math>
</td>
</td>
</tr>
<tr>
  <td align="center" colspan="3">
[<b>[[User:Tohline/Appendix/References#BT87|<font color="red">BT87</font>]]</b>], p. 648, Eq. (1B-30)
  </td>
</tr>
</table>
</ol>
===Governing Equations (SPH.)===
Introducing the above expressions into the [[User:Tohline/PGE|principal governing equations]] gives,
<div align="center">
<span id="Continuity"><font color="#770000">'''Equation of Continuity'''</font></span><br />
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\frac{d\rho}{dt} + \rho \biggl[ \frac{1}{r^2} \frac{\partial (r^2 \dot{r})}{\partial r}
+ \frac{1}{r\sin\theta} \frac{\partial }{\partial\theta} \biggl( \dot\theta r \sin\theta \biggr)
\biggr]</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~0</math>
  </td>
</tr>
</table>
<span id="PGE:Euler">
<font color="#770000">'''Euler Equation'''</font>
</span><br />
<table border="0" cellpadding="5" align="center">
<!--
<tr>
  <td align="right">
<math>~\frac{d\vec{v}}{dt}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~- \frac{1}{\rho} \nabla P - \nabla\Phi</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~
{\hat{e}}_r \biggl[ \frac{dv_r}{dt} -  v_\theta \dot\theta - v_\varphi \dot\varphi \sin\theta  \biggr]
+ {\hat{e}}_\theta \biggl[ \frac{dv_\theta}{dt} + v_r \dot\theta - v_\varphi \dot\varphi \cos\theta \biggr] 
+ {\hat{e}}_\varphi \biggl[ \frac{dv_\varphi}{dt} + v_r \dot\varphi \sin\theta + v_\theta \dot\varphi \cos\theta \biggr]
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~- {\hat{e}}_r \biggl[ \frac{1}{\rho} \frac{\partial P}{\partial r}+  \frac{\partial \Phi }{\partial r} \biggr]
- {\hat{e}}_\theta \biggl[ \frac{1}{\rho r}  \frac{\partial P}{\partial\theta} +  \frac{1}{r} \frac{\partial \Phi}{\partial\theta}  \biggr] 
</math>
  </td>
</tr>
-->
<tr>
  <td align="right">
<math>~
{\hat{e}}_r \biggl[ \frac{d\dot{r}}{dt} -  r {\dot\theta}^2 - r {\dot\varphi}^2 \sin^2\theta  \biggr]
+ {\hat{e}}_\theta \biggl[ \frac{d(r\dot\theta)}{dt} + \dot{r} \dot\theta - r { \dot\varphi }^2 \sin\theta \cos\theta \biggr] 
+ {\hat{e}}_\varphi \biggl[ \frac{d(r \sin\theta \dot\varphi)}{dt} + \dot{r} \dot\varphi \sin\theta + r \dot\theta \dot\varphi \cos\theta \biggr]
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~- {\hat{e}}_r \biggl[ \frac{1}{\rho} \frac{\partial P}{\partial r}+  \frac{\partial \Phi }{\partial r} \biggr]
- {\hat{e}}_\theta \biggl[ \frac{1}{\rho r}  \frac{\partial P}{\partial\theta} +  \frac{1}{r} \frac{\partial \Phi}{\partial\theta}  \biggr] 
</math>
  </td>
</tr>
</tr>
</table>
</table>




<li>Setting (who know what?)
<span id="PGE:AdiabaticFirstLaw">Adiabatic Form of the<br />
</ol>
<font color="#770000">'''First Law of Thermodynamics'''</font></span><br />
 
{{User:Tohline/Math/EQ_FirstLaw02}}
 
 
<span id="PGE:Poisson"><font color="#770000">'''Poisson Equation'''</font></span><br />
 
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~
\frac{1}{r^2} \frac{\partial }{\partial r} \biggl[ r^2 \frac{\partial \Phi }{\partial r} \biggr]
+ \frac{1}{r^2 \sin\theta} \frac{\partial }{\partial \theta}\biggl(\sin\theta ~ \frac{\partial \Phi}{\partial\theta}\biggr)
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~4\pi G\rho</math>
  </td>
</tr>
</table>
 
</div>
 
===Conservation of Specific Angular Momentum (SPH.)===
 
The <math>\hat{e}_\varphi</math> component of the Euler equation leads to a statement of conservation of specific angular momentum, <math>~j</math>, as follows. 
 
<div align="center">
 
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~0</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{d(r \sin\theta \dot\varphi)}{dt} + \dot{r} \dot\varphi \sin\theta + r \dot\theta \dot\varphi \cos\theta
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{1}{r\sin\theta} \biggl[ r\sin\theta\frac{d(r \sin\theta \dot\varphi)}{dt} + r\sin\theta  \dot\varphi ( \dot{r}\sin\theta +  r\dot\theta  \cos\theta) \biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{1}{r\sin\theta} \biggl[\frac{d(r^2 \sin^2\theta \dot\varphi )}{dt}  \biggr] \, .
</math>
  </td>
</tr>
</table>
 
<math>
\Rightarrow ~~~~~ j(r,\theta) \equiv (r\sin\theta)^2 \dot\varphi =  \mathrm{constant} ~(\mathrm{i.e.,}~\mathrm{independent~of~time})
</math><br />
 
</div>
 
 
<span id="RelevantSphericalComponents">So, for axisymmetric configurations, the <math>\hat{e}_r</math> and <math>\hat{e}_\theta</math> components of the Euler equation become, respectively,</span>
 
<table border="1" align="center" cellpadding="10"><tr><td align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right"><math>~{\hat{e}}_r</math>: &nbsp; &nbsp;</td>
  <td align="right">
<math>
\frac{d\dot{r}}{dt} -  r {\dot\theta}^2 - \biggl[ \frac{j^2}{r^3 \sin^3\theta} \biggr]\sin\theta
</math>
  </td>
  <td align="center">
=
  </td>
  <td align="left">
<math>
- \biggl[ \frac{1}{\rho} \frac{\partial P}{\partial r}+  \frac{\partial \Phi }{\partial r} \biggr]  \, ,
</math>
  </td>
</tr>
 
<tr>
  <td align="right"><math>~{\hat{e}}_\theta</math>: &nbsp; &nbsp;</td>
  <td align="right">
<math>
\frac{d(r\dot\theta)}{dt} + \dot{r} \dot\theta -  \biggl[ \frac{j^2}{r^3 \sin^3\theta} \biggr] \cos\theta
</math>
  </td>
  <td align="center">
=
  </td>
  <td align="left">
<math>
- \biggl[ \frac{1}{\rho r}  \frac{\partial P}{\partial\theta} +  \frac{1}{r} \frac{\partial \Phi}{\partial\theta}  \biggr] \, .
</math>
  </td>
</tr>
</table>
</td></tr></table>
 
===Eulerian Formulation (SPH.)===
 
Each of the above simplified governing equations has been written in terms of Lagrangian time derivatives.  An Eulerian formulation of each equation can be obtained by replacing each Lagrangian time derivative by its Eulerian counterpart.  Specifically, for any scalar function, <math>f</math>,
 


<div align="center">
<math>
\frac{df}{dt} \rightarrow \frac{\partial f}{\partial t} + (\vec{v}\cdot \nabla)f =
\frac{\partial f}{\partial t} +
\biggl[ v_r \frac{\partial f}{\partial r} \biggr]
+ \biggl[ \frac{v_\theta}{r} \frac{\partial f}{\partial\theta} \biggr] =
\frac{\partial f}{\partial t} +
\biggl[ \dot{r} \frac{\partial f}{\partial r} \biggr]
+ \biggl[ \dot\theta \frac{\partial f}{\partial\theta} \biggr]
\, .
</math>
</div>


After making this simplification, our governing equations become,
Making this substitution throughout the set of governing relations gives:


<div align="center">
<div align="center">
<span id="Continuity"><font color="#770000">'''Equation of Continuity'''</font></span><br />
<span id="Continuity"><font color="#770000">'''Equation of Continuity'''</font></span><br />


<math>\frac{d\rho}{dt} + \rho \biggl[\frac{1}{r^2}\frac{d(r^2 v_r)}{dr}  \biggr] = 0 </math><br />
<table border="0" cellpadding="5" align="center">


<tr>
  <td align="right">
<math>~
\frac{\partial \rho}{\partial t} 
+ \biggl[ \frac{1}{r^2} \frac{\partial (\rho r^2 \dot{r})}{\partial r}
+ \frac{1}{r\sin\theta} \frac{\partial }{\partial\theta} \biggl( \rho \dot\theta r \sin\theta \biggr)
\biggr]</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~0</math>
  </td>
</tr>
</table>


<span id="PGE:Euler"><font color="#770000">'''Euler Equation'''</font></span><br />


<math>\frac{dv_r}{dt} = - \frac{1}{\rho}\frac{dP}{dr} - \frac{d\Phi}{dr} </math><br />
<span id="PGE:Euler">The Two Relevant Components of the<br />
<font color="#770000">'''Euler Equation'''</font>
</span><br />


<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right"><math>~{\hat{e}}_r</math>: &nbsp; &nbsp;</td>
  <td align="right">
<math>
\biggl\{ \frac{\partial \dot{r}}{\partial t} + \biggl[ \dot{r} \frac{\partial \dot{r}}{\partial r} \biggr] + \biggl[ \dot\theta \frac{\partial \dot{r}}{\partial\theta} \biggr] \biggr\}
-  r {\dot\theta}^2
</math>
  </td>
  <td align="center">
=
  </td>
  <td align="left">
<math>
- \biggl[ \frac{1}{\rho} \frac{\partial P}{\partial r}+  \frac{\partial \Phi }{\partial r} \biggr]  + \biggl[ \frac{j^2}{r^3 \sin^2\theta} \biggr]
</math>
  </td>
</tr>


<tr>
  <td align="right"><math>~{\hat{e}}_\theta</math>: &nbsp; &nbsp;</td>
  <td align="right">
<math>
r \biggl\{ \frac{\partial \dot{\theta}}{\partial t} + \biggl[ \dot{r} \frac{\partial \dot{\theta}}{\partial r} \biggr] + \biggl[ \dot\theta \frac{\partial \dot{\theta}}{\partial\theta} \biggr] \biggr\} + 2\dot{r} \dot\theta
</math>
  </td>
  <td align="center">
=
  </td>
  <td align="left">
<math>
- \biggl[ \frac{1}{\rho r}  \frac{\partial P}{\partial\theta} +  \frac{1}{r} \frac{\partial \Phi}{\partial\theta}  \biggr] +  \biggl[ \frac{j^2}{r^3 \sin^3\theta} \biggr] \cos\theta
</math>
  </td>
</tr>
</table>


<span id="PGE:AdiabaticFirstLaw">Adiabatic Form of the<br />
<span id="PGE:AdiabaticFirstLaw">Adiabatic Form of the<br />
<font color="#770000">'''First Law of Thermodynamics'''</font></span><br />
<font color="#770000">'''First Law of Thermodynamics'''</font></span><br />


{{User:Tohline/Math/EQ_FirstLaw02}}
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~
\biggl\{ \frac{\partial \epsilon}{\partial t} + \biggl[ \dot{r} \frac{\partial \epsilon}{\partial r} \biggr] + \biggl[ \dot\theta \frac{\partial \epsilon}{\partial\theta} \biggr]  \biggr\}
+ P\biggl\{ \frac{\partial }{\partial t} \biggl( \frac{1}{\rho}\biggr)
+ \biggl[ \dot{r} \frac{\partial }{\partial r} \biggl( \frac{1}{\rho}\biggr) \biggr]
+ \biggl[ \dot\theta \frac{\partial }{\partial\theta} \biggl( \frac{1}{\rho}\biggr) \biggr]  \biggr\}
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~0</math>
  </td>
</tr>
</table>




<span id="PGE:Poisson"><font color="#770000">'''Poisson Equation'''</font></span><br />
<span id="PGE:Poisson"><font color="#770000">'''Poisson Equation'''</font></span><br />


<math>\frac{1}{r^2} \biggl[\frac{d }{dr} \biggl( r^2 \frac{d \Phi}{dr} \biggr) \biggr] = 4\pi G \rho </math><br />
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~
\frac{1}{r^2} \frac{\partial }{\partial r} \biggl[ r^2 \frac{\partial \Phi }{\partial r} \biggr]
+ \frac{1}{r^2 \sin\theta} \frac{\partial }{\partial \theta}\biggl(\sin\theta ~ \frac{\partial \Phi}{\partial\theta}\biggr)  
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~4\pi G\rho</math>
  </td>
</tr>
</table>
 
</div>
</div>


=See Also=
=See Also=




{{LSU_HBook_footer}}
{{LSU_HBook_footer}}

Latest revision as of 22:15, 8 August 2019

Axisymmetric Configurations (Governing Equations)

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

If the self-gravitating configuration that we wish to construct is axisymmetric, then the coupled set of multidimensional, partial differential equations that serve as our principal governing equations can be simplified to a coupled set of two-dimensional PDEs.

Cylindrical Coordinate Base

Here we choose to …

  1. Express each of the multidimensional spatial operators in cylindrical coordinates (<math>\varpi, \varphi, z</math>) (see, for example, the Wikipedia discussion of vector calculus formulae in cylindrical coordinates) and set to zero all spatial derivatives that are taken with respect to the angular coordinate <math>\varphi</math>:

    Spatial Operators in Cylindrical Coordinates

    <math> \nabla f </math>

    =

    <math> {\hat{e}}_\varpi \biggl[ \frac{\partial f}{\partial\varpi} \biggr] + {\hat{e}}_\varphi \cancel{\biggl[ \frac{1}{\varpi} \frac{\partial f}{\partial\varphi} \biggr]} + {\hat{e}}_z \biggl[ \frac{\partial f}{\partial z} \biggr] ; </math>

    [BT87], p. 649, Eq. (1B-37)

    <math> \nabla^2 f </math>

    =

    <math> \frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial f}{\partial\varpi} \biggr] + \cancel{\frac{1}{\varpi^2} \frac{\partial^2 f}{\partial\varphi^2}} + \frac{\partial^2 f}{\partial z^2} ; </math>

    [BT87], p. 650, Eq. (1B-50)

    <math> (\vec{v}\cdot\nabla)f </math>

    =

    <math> \biggl[ v_\varpi \frac{\partial f}{\partial\varpi} \biggr] + \cancel{\biggl[ \frac{v_\varphi}{\varpi} \frac{\partial f}{\partial\varphi} \biggr]} + \biggl[ v_z \frac{\partial f}{\partial z} \biggr] ; </math>

    <math> \nabla \cdot \vec{F} </math>

    =

    <math> \frac{1}{\varpi} \frac{\partial (\varpi F_\varpi)}{\partial\varpi} + \cancel{\frac{1}{\varpi} \frac{\partial F_\varphi}{\partial\varphi}} + \frac{\partial F_z}{\partial z} ; </math>

    [BT87], p. 650, Eq. (1B-45)

    <math> (\vec{F} \cdot \nabla )\vec{B} </math>

    =

    <math> \hat{e}_\varpi \biggl[ F_\varpi \frac{\partial B_\varpi}{\partial\varpi} + \cancel{\frac{F_\varphi}{\varpi} \frac{\partial B_\varpi}{\partial\varphi}} + F_z \frac{\partial B_\varpi}{\partial z} - \frac{F_\varphi B_\varphi}{\varpi} \biggr] + \hat{e}_\varphi \biggl[ F_\varpi \frac{\partial B_\varphi}{\partial \varpi} + \cancel{ \frac{F_\varphi}{\varpi} \frac{\partial B_\varphi}{\partial\varphi}} + F_z \frac{\partial B_\varphi}{\partial z} + \frac{F_\varphi B_\varpi}{\varpi} \biggr] + \hat{e}_z \biggl[ F_\varpi \frac{\partial B_z}{\partial\varpi} +\cancel{ \frac{F_\varphi}{\varpi} \frac{\partial B_z}{\partial \varphi}} + F_z \frac{\partial B_z}{\partial z} \biggr] \, . </math>

    [BT87], p. 651, Eq. (1B-54)

    From this last expression — the so-called convective operator — we conclude as well that, for axisymmetric systems,

    <math> (\vec{v} \cdot \nabla )\vec{v} </math>

    =

    <math> \hat{e}_\varpi \biggl[ v_\varpi \frac{\partial v_\varpi}{\partial\varpi} + v_z \frac{\partial v_\varpi}{\partial z} - \frac{v_\varphi v_\varphi}{\varpi} \biggr] + \hat{e}_\varphi \biggl[ v_\varpi \frac{\partial v_\varphi}{\partial \varpi} + v_z \frac{\partial v_\varphi}{\partial z} + \frac{v_\varphi v_\varpi}{\varpi} \biggr] + \hat{e}_z \biggl[ v_\varpi \frac{\partial v_z}{\partial\varpi} + v_z \frac{\partial v_z}{\partial z} \biggr] \, . </math>


  2. Express all vector time-derivatives in cylindrical coordinates:

    Vector Time-Derivatives in Cylindrical Coordinates

    <math> \frac{d}{dt}\vec{F} </math>

    =

    <math> {\hat{e}}_\varpi \frac{dF_\varpi}{dt} + F_\varpi \frac{d{\hat{e}}_\varpi}{dt} + {\hat{e}}_\varphi \frac{dF_\varphi}{dt} + F_\varphi \frac{d{\hat{e}}_\varphi}{dt} + {\hat{e}}_z \frac{dF_z}{dt} + F_z \frac{d{\hat{e}}_z}{dt} </math>

     

    =

    <math> {\hat{e}}_\varpi \biggl[ \frac{dF_\varpi}{dt} - F_\varphi \dot\varphi \biggr] + {\hat{e}}_\varphi \biggl[ \frac{dF_\varphi}{dt} + F_\varpi \dot\varphi \biggr] + {\hat{e}}_z \frac{dF_z}{dt} ; </math>

    <math> \vec{v} = \frac{d\vec{x}}{dt} = \frac{d}{dt}\biggl[ \hat{e}_\varpi \varpi + \hat{e}_z z \biggr] </math>

    =

    <math> {\hat{e}}_\varpi \biggl[ \dot\varpi \biggr] + {\hat{e}}_\varphi \biggl[ \varpi \dot\varphi \biggr] + {\hat{e}}_z \biggl[ \dot{z} \biggr] . </math>

    [BT87], p. 647, Eq. (1B-23)


Governing Equations (CYL.)

Introducing the above expressions into the principal governing equations gives,

Equation of Continuity

<math>\frac{d\rho}{dt} + \frac{\rho}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \varpi \dot\varpi \biggr] + \rho \frac{\partial}{\partial z} \biggl[ \rho \dot{z} \biggr] = 0 </math>


Euler Equation

<math> {\hat{e}}_\varpi \biggl[ \frac{d \dot\varpi}{dt} - \varpi {\dot\varphi}^2 \biggr] + {\hat{e}}_\varphi \biggl[ \frac{d(\varpi\dot\varphi)}{dt} + \dot\varpi \dot\varphi \biggr] + {\hat{e}}_z \biggl[ \frac{d \dot{z}}{dt} \biggr] = - {\hat{e}}_\varpi \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial\varpi} + \frac{\partial \Phi}{\partial\varpi}\biggr] - {\hat{e}}_z \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial z} + \frac{\partial \Phi}{\partial z} \biggr] </math>


Adiabatic Form of the
First Law of Thermodynamics

<math>~\frac{d\epsilon}{dt} + P \frac{d}{dt} \biggl(\frac{1}{\rho}\biggr) = 0</math>


Poisson Equation

<math> \frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial \Phi}{\partial\varpi} \biggr] + \frac{\partial^2 \Phi}{\partial z^2} = 4\pi G \rho . </math>

Conservation of Specific Angular Momentum (CYL.)

The <math>\hat{e}_\varphi</math> component of the Euler equation leads to a statement of conservation of specific angular momentum, <math>j</math>, as follows.

<math> \frac{d(\varpi\dot\varphi)}{dt} + \dot\varpi \dot\varphi = \frac{1}{\varpi}\biggl[ \varpi \frac{d(\varpi\dot\varphi)}{dt} + \varpi \dot\varpi \dot\varphi \biggr] =0 </math>

<math> \Rightarrow ~~~~~ \frac{d(\varpi^2 \dot\varphi)}{dt} = 0 </math>

<math> \Rightarrow ~~~~~ j(\varpi,z) \equiv \varpi^2 \dot\varphi = \mathrm{constant} ~(\mathrm{i.e.,}~\mathrm{independent~of~time}) </math>


So, for axisymmetric configurations, the <math>\hat{e}_\varpi</math> and <math>\hat{e}_z</math> components of the Euler equation become, respectively,

<math>~{\hat{e}}_\varpi</math>:    

<math> \frac{d \dot\varpi}{dt} - \frac{j^2}{\varpi^3} </math>

=

<math> - \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial\varpi} + \frac{\partial \Phi}{\partial\varpi}\biggr] </math>

<math>~{\hat{e}}_z</math>:    

<math> \frac{d \dot{z}}{dt} </math>

=

<math> - \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial z} + \frac{\partial \Phi}{\partial z} \biggr] </math>

Eulerian Formulation (CYL.)

Each of the above simplified governing equations has been written in terms of Lagrangian time derivatives. An Eulerian formulation of each equation can be obtained by replacing each Lagrangian time derivative by its Eulerian counterpart. Specifically, for any scalar function, <math>f</math>,


<math> \frac{df}{dt} \rightarrow \frac{\partial f}{\partial t} + (\vec{v}\cdot \nabla)f = \frac{\partial f}{\partial t} + \biggl[ \dot\varpi \frac{\partial f}{\partial\varpi} \biggr] + \biggl[ \dot{z} \frac{\partial f}{\partial z} \biggr] . </math>

Making this substitution throughout the set of governing relations gives:

Equation of Continuity

<math>\frac{\partial\rho}{\partial t} + \frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho \varpi \dot\varpi \biggr] + \frac{\partial}{\partial z} \biggl[ \rho \dot{z} \biggr] = 0 </math>


The Two Relevant Components of the
Euler Equation

<math>~{\hat{e}}_\varpi</math>:    

<math>~ \frac{\partial \dot\varpi}{\partial t} + \biggl[ \dot\varpi \frac{\partial \dot\varpi}{\partial\varpi} \biggr] + \biggl[ \dot{z} \frac{\partial \dot\varpi}{\partial z} \biggr] </math>

<math>~=</math>

<math>~ - \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial\varpi} + \frac{\partial \Phi}{\partial\varpi}\biggr] + \frac{j^2}{\varpi^3} </math>

<math>~{\hat{e}}_z</math>:    

<math>~ \frac{\partial \dot{z}}{\partial t} + \biggl[ \dot\varpi \frac{\partial \dot{z}}{\partial\varpi} \biggr] + \biggl[ \dot{z} \frac{\partial \dot{z}}{\partial z} \biggr] </math>

<math>~=</math>

<math>~ - \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial z} + \frac{\partial \Phi}{\partial z} \biggr] </math>

Adiabatic Form of the
First Law of Thermodynamics

<math>~ \biggl\{\frac{\partial \epsilon}{\partial t} + \biggl[ \dot\varpi \frac{\partial \epsilon}{\partial\varpi} \biggr] + \biggl[ \dot{z} \frac{\partial \epsilon}{\partial z} \biggr]\biggr\} + P \biggl\{\frac{\partial }{\partial t}\biggl(\frac{1}{\rho}\biggr) + \biggl[ \dot\varpi \frac{\partial }{\partial\varpi}\biggl(\frac{1}{\rho}\biggr) \biggr] + \biggl[ \dot{z} \frac{\partial }{\partial z}\biggl(\frac{1}{\rho}\biggr) \biggr] \biggr\} = 0 </math>


Poisson Equation

<math> \frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial \Phi}{\partial\varpi} \biggr] + \frac{\partial^2 \Phi}{\partial z^2} = 4\pi G \rho . </math>

Spherical Coordinate Base

Here we choose to …

  1. Express each of the multidimensional spatial operators in spherical coordinates (<math>r, \theta, \varphi</math>) (see, for example, the Wikipedia discussion of vector calculus formulae in spherical coordinates) and set to zero all spatial derivatives that are taken with respect to the angular coordinate <math>\varphi</math>:

    Spatial Operators in Spherical Coordinates

    <math> \nabla f </math>

    =

    <math> {\hat{e}}_r \biggl[ \frac{\partial f}{\partial r} \biggr] + {\hat{e}}_\theta \biggl[ \frac{1}{r} \frac{\partial f}{\partial\theta} \biggr] + {\hat{e}}_\varphi \cancel{\biggl[\frac{1}{r\sin\theta}~ \frac{\partial f}{\partial \varphi} \biggr]} ; </math>

    [BT87], p. 649, Eq. (1B-38)

    <math> \nabla^2 f </math>

    =

    <math> \frac{1}{r^2} \frac{\partial }{\partial r} \biggl[ r^2 \frac{\partial f}{\partial r} \biggr] + \frac{1}{r^2 \sin\theta} \frac{\partial }{\partial \theta}\biggl(\sin\theta \frac{\partial f}{\partial\theta}\biggr) + \cancel{ \biggl[\frac{1}{r^2 \sin^2\theta} \frac{\partial^2 f}{\partial \varphi^2} \biggr]} ; </math>

    [BT87], p. 650, Eq. (1B-51)

    <math> (\vec{v}\cdot\nabla)f </math>

    =

    <math> \biggl[ v_r \frac{\partial f}{\partial r} \biggr] + \biggl[ \frac{v_\theta}{r} \frac{\partial f}{\partial\theta} \biggr] + \cancel{\biggl[\frac{v_\varphi}{r\sin\theta}~ \frac{\partial f}{\partial \varphi} \biggr]} ; </math>

    <math> \nabla \cdot \vec{F} </math>

    =

    <math> \frac{1}{r^2} \frac{\partial (r^2 F_r)}{\partial r} + \frac{1}{r\sin\theta} \frac{\partial }{\partial\theta} \biggl( F_\theta \sin\theta \biggr) + \cancel{ \biggl[ \frac{1}{r\sin\theta}~\frac{\partial F_\varphi}{\partial \varphi} \biggr]} ; </math>

    [BT87], p. 650, Eq. (1B-46)

    <math> (\vec{F} \cdot \nabla )\vec{B} </math>

    =

    <math> \hat{e}_r \biggl[ F_r \frac{\partial B_r}{\partial r} + \frac{F_\theta}{r} \frac{\partial B_r}{\partial \theta} + \cancel{ \frac{F_\varphi}{r\sin\theta} \frac{\partial B_r}{\partial \varphi} } - \frac{(F_\theta B_\theta + F_\varphi B_\varphi)}{r}\biggr] </math>

     

     

    <math> + \hat{e}_\theta \biggl[ F_r \frac{\partial B_\theta}{\partial r} + \frac{F_\theta}{r} \frac{\partial B_\theta}{\partial \theta } + \cancel{ \frac{F_\varphi}{r\sin\theta} \frac{\partial B_\theta}{\partial \varphi} } + \frac{F_\theta B_r}{r} - \frac{F_\varphi B_\varphi \cot\theta}{r} \biggr] </math>

     

     

    <math> + \hat{e}_\varphi \biggl[ F_r \frac{\partial B_\varphi}{\partial r} + \frac{F_\theta}{r} \frac{\partial B_\varphi}{\partial \theta} + \cancel{ \frac{F_\varphi}{r\sin\theta} \frac{\partial B_\varphi}{\partial \varphi} } + \frac{F_\varphi B_r}{r} + \frac{F_\varphi B_\theta \cot\theta}{r} \biggr] \, . </math>

    [BT87], p. 651, Eq. (1B-55)

    From this last expression — the so-called convective operator — we conclude as well that, for axisymmetric systems,

    <math> (\vec{v} \cdot \nabla )\vec{v} </math>

    =

    <math> \hat{e}_r \biggl[ v_r \frac{\partial v_r}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_r}{\partial \theta} - \frac{(v_\theta^2 + v_\varphi^2 )}{r}\biggr] + \hat{e}_\theta \biggl[ v_r \frac{\partial v_\theta}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_\theta}{\partial \theta } + \frac{v_\theta v_r}{r} - \frac{v_\varphi^2 \cot\theta}{r} \biggr] + \hat{e}_\varphi \biggl[ v_r \frac{\partial v_\varphi}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_\varphi}{\partial \theta} + \frac{v_\varphi v_r}{r} + \frac{v_\varphi v_\theta \cot\theta}{r} \biggr] \, . </math>

  2. Express all vector time-derivatives in spherical coordinates:

    Vector Time-Derivatives in Spherical Coordinates

    <math> \frac{d}{dt}\vec{F} </math>

    =

    <math> {\hat{e}}_r \frac{dF_r}{dt} + F_r \frac{d{\hat{e}}_r}{dt} + {\hat{e}}_\theta \frac{dF_\theta}{dt} + F_\theta \frac{d{\hat{e}}_\theta}{dt} + {\hat{e}}_\varphi \frac{dF_\varphi}{dt} + F_\varphi \frac{d{\hat{e}}_\varphi}{dt} </math>

     

    =

    <math> {\hat{e}}_r \frac{dF_r}{dt} + F_r \biggl[ {\hat{e}}_\theta \dot\theta + {\hat{e}}_\varphi \dot\varphi \sin\theta \biggr] + {\hat{e}}_\theta \frac{dF_\theta}{dt} + F_\theta \biggl[ - {\hat{e}}_r \dot\theta + {\hat{e}}_\varphi \dot\varphi \cos\theta \biggr] + {\hat{e}}_\varphi \frac{dF_\varphi}{dt} + F_\varphi \biggl[ - {\hat{e}}_r \dot\varphi \sin\theta - {\hat{e}}_\theta \dot\varphi \cos\theta \biggr] </math>

     

    =

    <math> {\hat{e}}_r \biggl[ \frac{dF_r}{dt} - F_\theta \dot\theta - F_\varphi \dot\varphi \sin\theta \biggr] + {\hat{e}}_\theta \biggl[ \frac{dF_\theta}{dt} + F_r \dot\theta - F_\varphi \dot\varphi \cos\theta \biggr] + {\hat{e}}_\varphi \biggl[ \frac{dF_\varphi}{dt} + F_r \dot\varphi \sin\theta + F_\theta \dot\varphi \cos\theta \biggr] ; </math>

    <math> \vec{v} = \frac{d\vec{x}}{dt} </math>

    =

    <math> \frac{d}{dt}\biggl[ \hat{e}_r r \biggr] = {\hat{e}}_r \dot{r} + {\hat{e}}_\theta~ r \dot\theta + {\hat{e}}_\varphi ~r \sin\theta ~ \dot\varphi . </math>

    [BT87], p. 648, Eq. (1B-30)

Governing Equations (SPH.)

Introducing the above expressions into the principal governing equations gives,

Equation of Continuity

<math>~\frac{d\rho}{dt} + \rho \biggl[ \frac{1}{r^2} \frac{\partial (r^2 \dot{r})}{\partial r} + \frac{1}{r\sin\theta} \frac{\partial }{\partial\theta} \biggl( \dot\theta r \sin\theta \biggr)

\biggr]</math>

<math>~=</math>

<math>~0</math>


Euler Equation

<math>~ {\hat{e}}_r \biggl[ \frac{d\dot{r}}{dt} - r {\dot\theta}^2 - r {\dot\varphi}^2 \sin^2\theta \biggr] + {\hat{e}}_\theta \biggl[ \frac{d(r\dot\theta)}{dt} + \dot{r} \dot\theta - r { \dot\varphi }^2 \sin\theta \cos\theta \biggr] + {\hat{e}}_\varphi \biggl[ \frac{d(r \sin\theta \dot\varphi)}{dt} + \dot{r} \dot\varphi \sin\theta + r \dot\theta \dot\varphi \cos\theta \biggr] </math>

<math>~=</math>

<math>~- {\hat{e}}_r \biggl[ \frac{1}{\rho} \frac{\partial P}{\partial r}+ \frac{\partial \Phi }{\partial r} \biggr] - {\hat{e}}_\theta \biggl[ \frac{1}{\rho r} \frac{\partial P}{\partial\theta} + \frac{1}{r} \frac{\partial \Phi}{\partial\theta} \biggr] </math>


Adiabatic Form of the
First Law of Thermodynamics

<math>~\frac{d\epsilon}{dt} + P \frac{d}{dt} \biggl(\frac{1}{\rho}\biggr) = 0</math>


Poisson Equation

<math>~ \frac{1}{r^2} \frac{\partial }{\partial r} \biggl[ r^2 \frac{\partial \Phi }{\partial r} \biggr] + \frac{1}{r^2 \sin\theta} \frac{\partial }{\partial \theta}\biggl(\sin\theta ~ \frac{\partial \Phi}{\partial\theta}\biggr) </math>

<math>~=</math>

<math>~4\pi G\rho</math>

Conservation of Specific Angular Momentum (SPH.)

The <math>\hat{e}_\varphi</math> component of the Euler equation leads to a statement of conservation of specific angular momentum, <math>~j</math>, as follows.

<math>~0</math>

<math>~=</math>

<math>~ \frac{d(r \sin\theta \dot\varphi)}{dt} + \dot{r} \dot\varphi \sin\theta + r \dot\theta \dot\varphi \cos\theta </math>

 

<math>~=</math>

<math>~ \frac{1}{r\sin\theta} \biggl[ r\sin\theta\frac{d(r \sin\theta \dot\varphi)}{dt} + r\sin\theta \dot\varphi ( \dot{r}\sin\theta + r\dot\theta \cos\theta) \biggr] </math>

 

<math>~=</math>

<math>~ \frac{1}{r\sin\theta} \biggl[\frac{d(r^2 \sin^2\theta \dot\varphi )}{dt} \biggr] \, . </math>

<math> \Rightarrow ~~~~~ j(r,\theta) \equiv (r\sin\theta)^2 \dot\varphi = \mathrm{constant} ~(\mathrm{i.e.,}~\mathrm{independent~of~time}) </math>


So, for axisymmetric configurations, the <math>\hat{e}_r</math> and <math>\hat{e}_\theta</math> components of the Euler equation become, respectively,

<math>~{\hat{e}}_r</math>:    

<math>

\frac{d\dot{r}}{dt} -  r {\dot\theta}^2 - \biggl[ \frac{j^2}{r^3 \sin^3\theta} \biggr]\sin\theta

</math>

=

<math> - \biggl[ \frac{1}{\rho} \frac{\partial P}{\partial r}+ \frac{\partial \Phi }{\partial r} \biggr] \, , </math>

<math>~{\hat{e}}_\theta</math>:    

<math> \frac{d(r\dot\theta)}{dt} + \dot{r} \dot\theta - \biggl[ \frac{j^2}{r^3 \sin^3\theta} \biggr] \cos\theta </math>

=

<math> - \biggl[ \frac{1}{\rho r} \frac{\partial P}{\partial\theta} + \frac{1}{r} \frac{\partial \Phi}{\partial\theta} \biggr] \, . </math>

Eulerian Formulation (SPH.)

Each of the above simplified governing equations has been written in terms of Lagrangian time derivatives. An Eulerian formulation of each equation can be obtained by replacing each Lagrangian time derivative by its Eulerian counterpart. Specifically, for any scalar function, <math>f</math>,


<math> \frac{df}{dt} \rightarrow \frac{\partial f}{\partial t} + (\vec{v}\cdot \nabla)f = \frac{\partial f}{\partial t} + \biggl[ v_r \frac{\partial f}{\partial r} \biggr] + \biggl[ \frac{v_\theta}{r} \frac{\partial f}{\partial\theta} \biggr] = \frac{\partial f}{\partial t} + \biggl[ \dot{r} \frac{\partial f}{\partial r} \biggr] + \biggl[ \dot\theta \frac{\partial f}{\partial\theta} \biggr] \, . </math>

Making this substitution throughout the set of governing relations gives:

Equation of Continuity

<math>~ \frac{\partial \rho}{\partial t} + \biggl[ \frac{1}{r^2} \frac{\partial (\rho r^2 \dot{r})}{\partial r} + \frac{1}{r\sin\theta} \frac{\partial }{\partial\theta} \biggl( \rho \dot\theta r \sin\theta \biggr)

\biggr]</math>

<math>~=</math>

<math>~0</math>


The Two Relevant Components of the
Euler Equation

<math>~{\hat{e}}_r</math>:    

<math> \biggl\{ \frac{\partial \dot{r}}{\partial t} + \biggl[ \dot{r} \frac{\partial \dot{r}}{\partial r} \biggr] + \biggl[ \dot\theta \frac{\partial \dot{r}}{\partial\theta} \biggr] \biggr\} - r {\dot\theta}^2 </math>

=

<math> - \biggl[ \frac{1}{\rho} \frac{\partial P}{\partial r}+ \frac{\partial \Phi }{\partial r} \biggr] + \biggl[ \frac{j^2}{r^3 \sin^2\theta} \biggr] </math>

<math>~{\hat{e}}_\theta</math>:    

<math> r \biggl\{ \frac{\partial \dot{\theta}}{\partial t} + \biggl[ \dot{r} \frac{\partial \dot{\theta}}{\partial r} \biggr] + \biggl[ \dot\theta \frac{\partial \dot{\theta}}{\partial\theta} \biggr] \biggr\} + 2\dot{r} \dot\theta </math>

=

<math> - \biggl[ \frac{1}{\rho r} \frac{\partial P}{\partial\theta} + \frac{1}{r} \frac{\partial \Phi}{\partial\theta} \biggr] + \biggl[ \frac{j^2}{r^3 \sin^3\theta} \biggr] \cos\theta </math>

Adiabatic Form of the
First Law of Thermodynamics

<math>~ \biggl\{ \frac{\partial \epsilon}{\partial t} + \biggl[ \dot{r} \frac{\partial \epsilon}{\partial r} \biggr] + \biggl[ \dot\theta \frac{\partial \epsilon}{\partial\theta} \biggr] \biggr\} + P\biggl\{ \frac{\partial }{\partial t} \biggl( \frac{1}{\rho}\biggr) + \biggl[ \dot{r} \frac{\partial }{\partial r} \biggl( \frac{1}{\rho}\biggr) \biggr] + \biggl[ \dot\theta \frac{\partial }{\partial\theta} \biggl( \frac{1}{\rho}\biggr) \biggr] \biggr\} </math>

<math>~=</math>

<math>~0</math>


Poisson Equation

<math>~ \frac{1}{r^2} \frac{\partial }{\partial r} \biggl[ r^2 \frac{\partial \Phi }{\partial r} \biggr] + \frac{1}{r^2 \sin\theta} \frac{\partial }{\partial \theta}\biggl(\sin\theta ~ \frac{\partial \Phi}{\partial\theta}\biggr) </math>

<math>~=</math>

<math>~4\pi G\rho</math>

See Also

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation