Difference between revisions of "User:Tohline/Apps/PapaloizouPringle84"

From VistrailsWiki
Jump to navigation Jump to search
Line 218: Line 218:


==Rewritten Velocity Components==
==Rewritten Velocity Components==
===PP84===


Again following the lead of [http://adsabs.harvard.edu/abs/1984MNRAS.208..721P PP84], we let <math>~W^'</math> represent the (normalized) perturbation in the fluid entropy, specifically,
Again following the lead of [http://adsabs.harvard.edu/abs/1984MNRAS.208..721P PP84], we let <math>~W^'</math> represent the (normalized) perturbation in the fluid entropy, specifically,
Line 463: Line 465:
<tr>
<tr>
   <th align="center">
   <th align="center">
Cylindrical-Coordinate Components of the Perturbed Velocity
Cylindrical-Coordinate Components of the Perturbed Velocity from PP84
   </th>
   </th>
</tr>
</tr>
Line 541: Line 543:


These three velocity-component expressions  match, respectively, equations (3.14), (3.15), and (3.16) of [http://adsabs.harvard.edu/abs/1984MNRAS.208..721P PP84].
These three velocity-component expressions  match, respectively, equations (3.14), (3.15), and (3.16) of [http://adsabs.harvard.edu/abs/1984MNRAS.208..721P PP84].
===GGN86===
In &sect;2.2 of their paper, [http://adsabs.harvard.edu/abs/1986MNRAS.221..339G P. Goldreich, J. Goodman, and R. Narayan (1986, MNRAS, 221, 339)] &#8212; hereafter, GGN86 &#8212; also present expressions for the three components of the perturbed velocity.  Specifically, from their equations (2.21) - 2.25) we find,
<table border="1" cellpadding="8" align="center">
<tr>
  <th align="center">
Perturbed Velocity Components from &sect;2.2 of [http://adsabs.harvard.edu/abs/1986MNRAS.221..339G GGN86]
  </th>
</tr>
<tr><td>
<table border="0" cellpadding="8" align="center">
<tr><td align="center" colspan="3"><font color="#770000">'''<math>~x</math> Component'''</font></td></tr>
<tr>
  <td align="right">
<math>~ u ( \kappa^2 - \sigma^2_\mathrm{GGN})</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~i \biggl[ \sigma_\mathrm{GGN}~\frac{\partial Q}{\partial x}
- 2\Omega_0 k Q \biggr] \, ,
</math>
  </td>
</tr>
<tr><td align="center" colspan="3"><font color="#770000">'''<math>~y</math> Component'''</font></td></tr>
<tr>
  <td align="right">
<math>~ v ( \kappa^2 - \sigma^2_\mathrm{GGN})</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~2B~\frac{\partial Q}{\partial x}  - \sigma_\mathrm{GGN} k Q  \, ,
</math>
  </td>
</tr>
<tr><td align="center" colspan="3"><font color="#770000">'''<math>~z</math> Component'''</font></td></tr>
<tr>
  <td align="right">
<math>~
~w
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~- i \biggl(\frac{1}{\sigma_\mathrm{GGN}}\biggr) \frac{\partial Q}{\partial z} \, .
</math>
  </td>
</tr>
</table>
where,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\kappa^2 \equiv \frac{2{\dot\varphi}_0}{\varpi} \biggl[ \frac{\partial (\varpi^2\dot\varphi_0)}{\partial\varpi} \biggr]</math>
  </td>
  <td align="center">
&nbsp; &nbsp; &nbsp; &nbsp; and &nbsp; &nbsp; &nbsp; &nbsp;
  </td>
  <td align="left">
<math>~{\bar\sigma} \equiv (\sigma + m{\dot\varphi}_0) </math>
  </td>
</tr>
</table>
</td></tr>
</table>




==Formulation of Eigenvalue Problem==
==Formulation of Eigenvalue Problem==


=See Also=
=See Also=

Revision as of 21:31, 13 March 2016


Nonaxisymmetric Instability in Papaloizou-Pringle Tori

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Linearized Principal Governing Equations in Cylindrical Coordinates

We begin by drawing from an accompanying derivation the relevant set of linearized principal governing equations, written in cylindrical coordinates but, following the lead of Papaloizou & Pringle (1984, MNRAS, 208, 721-750; hereafter, PP84), express each perturbation in the form,

<math>~q^'~~\rightarrow~~ q^' (\varpi,z) f_\sigma</math>

        where,        

<math>~f_\sigma \equiv e^{i(m\varphi + \sigma t)} \, ,</math>

and, set <math>~\Phi^' = 0</math> — hence, the Poisson equation becomes irrelevant — because the torus is assumed not to be self-gravitating and the background (point source) potential, <math>~\Phi_0</math>, is assumed to be unchanging.

Set of Linearized Principal Governing Equations in Cylindrical Coordinates

Continuity Equation

<math>~\frac{\partial (\rho^' f_\sigma) }{\partial t} + ( {\dot\varphi}_0 )\frac{\partial (\rho^' f_\sigma)}{\partial \varphi} </math>

<math>~=</math>

<math>~ - \frac{f_\sigma}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho_0 \varpi {\dot\varpi}^' \biggr] - \frac{1}{\varpi} \frac{\partial }{\partial \varphi} \biggl[ \rho_0 \varpi {\dot\varphi}^' f_\sigma\biggr] - f_\sigma\frac{\partial}{\partial z} \biggl[ \rho_0 {\dot{z}}^' \biggr] </math>

<math>\varpi</math> Component of Euler Equation

<math>~ \frac{\partial ({\dot\varpi}^'f_\sigma) }{\partial t} + ( {\dot\varphi}_0 ) \frac{\partial ( {\dot\varpi}^'f_\sigma)}{\partial\varphi} - 2\varpi ( {\dot\varphi}_0 {\dot\varphi}^' f_\sigma) </math>

<math>~=</math>

<math>~ - f_\sigma\frac{\partial}{\partial\varpi}\biggl( \frac{P^'}{\rho_0} \biggr) </math>

<math>\varphi</math> Component of Euler Equation

<math>~\frac{\partial (\varpi {\dot\varphi}^' f_\sigma)}{\partial t} + ( \dot\varphi_0)\frac{\partial (\varpi{\dot\varphi}^' f_\sigma)}{\partial\varphi} + \frac{{\dot\varpi}^' f_\sigma}{\varpi}\biggl[ \frac{\partial (\varpi^2\dot\varphi_0)}{\partial\varpi} \biggr] </math>

<math>~=</math>

<math>~- \frac{ 1}{\varpi} \biggl[ \frac{\partial }{\partial \varphi} \biggl(\frac{P^'f_\sigma}{\rho_0}\biggr) \biggr] </math>

<math>~z</math> Component of Euler Equation

<math>~ \frac{\partial ({\dot{z}}^' f_\sigma)}{\partial t} + (\dot\varphi_0) \frac{\partial ({\dot{z}}^' f_\sigma)}{\partial\varphi} </math>

<math>~=</math>

<math>~ - f_\sigma \frac{\partial}{\partial z}\biggl( \frac{P^'}{\rho_0} \biggr) </math>

Adiabatic Form of the 1st Law of Thermodynamics

<math>~\frac{P^' f_\sigma}{P_0}</math>

<math>~=</math>

<math>~ \frac{\gamma (\rho^' f_\sigma)}{\rho_0} </math>


Next, taking derivatives of <math>~f_\sigma</math>, where indicated, then dividing every equation through by <math>~f_\sigma</math> gives,

Linearized Adiabatic Form of the 1st Law of Thermodynamics

<math>~\frac{P^' }{P_0}</math>

<math>~=</math>

<math>~ \frac{\gamma \rho^' }{\rho_0} \, ;</math>

Linearized <math>\varpi</math> Component of Euler Equation

<math>~{\dot\varpi}^'[i(\sigma + m{\dot\varphi}_0)] - 2 {\dot\varphi}_0 (\varpi {\dot\varphi}^' ) </math>

<math>~=</math>

<math>~ - \frac{\partial}{\partial\varpi}\biggl( \frac{P^'}{\rho_0} \biggr) \, ; </math>

Linearized <math>\varphi</math> Component of Euler Equation

<math>~(\varpi {\dot\varphi}^')[i(\sigma + m{\dot\varphi}_0)] + \frac{{\dot\varpi}^'}{\varpi}\biggl[ \frac{\partial (\varpi^2\dot\varphi_0)}{\partial\varpi} \biggr] </math>

<math>~=</math>

<math>~- \frac{ im}{\varpi} \biggl(\frac{P^'}{\rho_0}\biggr) \, ; </math>

Linearized <math>~z</math> Component of Euler Equation

<math>~ ~{\dot{z}}^'[i(\sigma + m{\dot\varphi}_0)] </math>

<math>~=</math>

<math>~ - \frac{\partial}{\partial z}\biggl( \frac{P^'}{\rho_0} \biggr) \, ; </math>

Linearized Continuity Equation

<math>~\rho^'[i(\sigma + m{\dot\varphi}_0)] + i m\rho_0 (\varpi {\dot\varphi}^' ) </math>

<math>~=</math>

<math>~ - \frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho_0 \varpi {\dot\varpi}^' \biggr] - \frac{\partial}{\partial z} \biggl[ \rho_0 {\dot{z}}^' \biggr] \, . </math>

These five equations match, respectively, equations (3.8) - (3.12) of PP84.

Rewritten Velocity Components

PP84

Again following the lead of PP84, we let <math>~W^'</math> represent the (normalized) perturbation in the fluid entropy, specifically,

<math>~W^' </math>

<math>~\equiv</math>

<math>~\frac{P^'}{\rho_0(\sigma + m{\dot\varphi}_0)} </math>

<math>~\Rightarrow~~~~\frac{\partial}{\partial\varpi}\biggl(\frac{P^'}{\rho_0} \biggr)</math>

<math>~=</math>

<math>~\frac{\partial}{\partial\varpi} \biggl[ W^'(\sigma + m{\dot\varphi}_0 )\biggr]</math>

 

<math>~=</math>

<math>~(\sigma + m{\dot\varphi}_0 )\frac{\partial W^'}{\partial\varpi} + mW^'\frac{\partial {\dot\varphi}_0 }{\partial\varpi} </math>

in which case the three linearized components of the Euler equation may be rewritten as,

Linearized <math>\varpi</math> Component of Euler Equation

<math>~{\dot\varpi}^' </math>

<math>~=</math>

<math>~ i \biggl[ \frac{\partial W^'}{\partial\varpi} + \frac{mW^'}{(\sigma + m{\dot\varphi}_0)}\frac{\partial {\dot\varphi}_0 }{\partial\varpi} - \frac{2{\dot\varphi}_0 (\varpi {\dot\varphi}^' )}{(\sigma + m{\dot\varphi}_0)} \biggr] </math>

Linearized <math>\varphi</math> Component of Euler Equation

<math>~(\varpi {\dot\varphi}^') </math>

<math>~=</math>

<math>~- \frac{ mW^'}{\varpi} + i~ \frac{{\dot\varpi}^'}{\varpi(\sigma + m{\dot\varphi}_0)}\biggl[ \frac{\partial (\varpi^2\dot\varphi_0)}{\partial\varpi} \biggr] \, ; </math>

Linearized <math>~z</math> Component of Euler Equation

<math>~ ~{\dot{z}}^' </math>

<math>~=</math>

<math>~ i~\frac{\partial W^'}{\partial z} \, . </math>

Using the second of these three relations to provide an expression for <math>~(\varpi {\dot\varphi}^')</math> in terms of <math>~W^'</math> and <math>~{\dot\varpi}^'</math>, and plugging this expression into the first relation allows us to solve for the radial component of the perturbed velocity in terms of <math>~W^'</math> and its radial derivative. Specifically, we obtain,

<math>~{\dot\varpi}^' </math>

<math>~=</math>

<math>~i \frac{\partial W^'}{\partial \varpi} + i~\frac{mW^'}{(\sigma + m{\dot\varphi}_0)} \biggl[ \frac{\kappa^2}{2\varpi {\dot\varphi}_0} - \frac{2 {\dot\varphi}_0 }{\varpi}\biggr] - i~ \frac{2 {\dot\varphi}_0 }{(\sigma + m{\dot\varphi}_0)} \biggl[ - \frac{ mW^'}{\varpi} + i~ \frac{{\dot\varpi}^'}{\varpi(\sigma + m{\dot\varphi}_0)}\biggl( \frac{ \kappa^2 \varpi }{ 2{\dot\varphi}_0 } \biggr) \biggr] </math>

 

<math>~=</math>

<math>~i \frac{\partial W^'}{\partial \varpi} + i~\frac{mW^'}{(\sigma + m{\dot\varphi}_0)} \biggl[ \frac{\kappa^2}{2\varpi {\dot\varphi}_0} \biggr] + \biggl[ \frac{2 {\dot\varphi}_0 }{(\sigma + m{\dot\varphi}_0)} \biggr]\biggl[ \frac{{\dot\varpi}^'}{\varpi(\sigma + m{\dot\varphi}_0)}\biggl( \frac{ \kappa^2 \varpi }{ 2{\dot\varphi}_0 } \biggr) \biggr] </math>

 

<math>~=</math>

<math>~i \biggl[ \frac{\partial W^'}{\partial \varpi} +\biggl( \frac{\kappa^2}{2\varpi {\dot\varphi}_0} \biggr) \frac{ mW^'}{\bar\sigma} \biggr] + \biggl[ {\dot\varpi}^'\biggl( \frac{ \kappa^2 }{ {\bar\sigma}^2 } \biggr) \biggr] </math>

<math>~\Rightarrow ~~~~ {\dot\varpi}^' ({\bar\sigma}^2 - \kappa^2 )</math>

<math>~=</math>

<math>~i \biggl[ {\bar\sigma}^2~\frac{\partial W^'}{\partial \varpi} +\biggl( \frac{\kappa^2}{2\varpi {\dot\varphi}_0} \biggr) mW^' \bar\sigma \biggr] \, , </math>

where, adopting notation from PP84,

<math>~\kappa^2 \equiv \frac{2{\dot\varphi}_0}{\varpi} \biggl[ \frac{\partial (\varpi^2\dot\varphi_0)}{\partial\varpi} \biggr]</math>

        and        

<math>~{\bar\sigma} \equiv (\sigma + m{\dot\varphi}_0) \, .</math>

This means, as well, that,

<math>~(\varpi {\dot\varphi}^') ({\bar\sigma}^2 - \kappa^2 ) </math>

<math>~=</math>

<math>~- \frac{ mW^'}{\varpi} ({\bar\sigma}^2 - \kappa^2 ) - \frac{ 1 }{\varpi \bar\sigma }\biggl[ \frac{\kappa^2 \varpi }{ 2{\dot\varphi}_0 } \biggr] \biggl[ {\bar\sigma}^2~\frac{\partial W^'}{\partial \varpi} +\biggl( \frac{2 {\dot\varphi}_0}{\varpi} + \frac{\partial {\dot\varphi}_0}{\partial\varpi} \biggr) mW^' \bar\sigma \biggr] </math>

 

<math>~=</math>

<math>~- \frac{ m{\bar\sigma}^2 W^'}{\varpi} + \frac{ m\kappa^2W^'}{\varpi} - \frac{\kappa^2 {\bar\sigma} }{ 2{\dot\varphi}_0 } \biggl[ ~\frac{\partial W^'}{\partial \varpi} +\biggl( \frac{2 {\dot\varphi}_0}{\varpi} + \frac{\partial {\dot\varphi}_0}{\partial\varpi} \biggr) \frac{mW^' }{\bar\sigma } \biggr] </math>

 

<math>~=</math>

<math>~- \frac{ m{\bar\sigma}^2 W^'}{\varpi} - \frac{\kappa^2 {\bar\sigma} }{ 2{\dot\varphi}_0 } \biggl[ ~\frac{\partial W^'}{\partial \varpi} +\biggl(\frac{\partial {\dot\varphi}_0}{\partial\varpi} \biggr) \frac{mW^' }{\bar\sigma } \biggr] \, . </math>


In summary, the three components of the perturbed velocity are:


Cylindrical-Coordinate Components of the Perturbed Velocity from PP84

<math>\varpi</math> Component

<math>~ {\dot\varpi}^' ({\bar\sigma}^2 - \kappa^2 )</math>

<math>~=</math>

<math>~i \biggl[ {\bar\sigma}^2~\frac{\partial W^'}{\partial \varpi} +\biggl( \frac{\kappa^2}{2\varpi {\dot\varphi}_0} \biggr) mW^' \bar\sigma \biggr] \, , </math>

<math>\varphi</math> Component

<math>~(\varpi {\dot\varphi}^') ({\bar\sigma}^2 - \kappa^2 ) </math>

<math>~=</math>

<math>~- \frac{ m{\bar\sigma}^2 W^'}{\varpi} - \frac{\kappa^2 {\bar\sigma} }{ 2{\dot\varphi}_0 } \biggl[ ~\frac{\partial W^'}{\partial \varpi} +\biggl(\frac{\partial {\dot\varphi}_0}{\partial\varpi} \biggr) \frac{mW^' }{\bar\sigma } \biggr] \, . </math>

<math>~z</math> Component

<math>~ ~{\dot{z}}^' </math>

<math>~=</math>

<math>~ i~\frac{\partial W^'}{\partial z} \, . </math>

where,

<math>~\kappa^2 \equiv \frac{2{\dot\varphi}_0}{\varpi} \biggl[ \frac{\partial (\varpi^2\dot\varphi_0)}{\partial\varpi} \biggr]</math>

        and        

<math>~{\bar\sigma} \equiv (\sigma + m{\dot\varphi}_0) </math>


These three velocity-component expressions match, respectively, equations (3.14), (3.15), and (3.16) of PP84.

GGN86

In §2.2 of their paper, P. Goldreich, J. Goodman, and R. Narayan (1986, MNRAS, 221, 339) — hereafter, GGN86 — also present expressions for the three components of the perturbed velocity. Specifically, from their equations (2.21) - 2.25) we find,


Perturbed Velocity Components from §2.2 of GGN86

<math>~x</math> Component

<math>~ u ( \kappa^2 - \sigma^2_\mathrm{GGN})</math>

<math>~=</math>

<math>~i \biggl[ \sigma_\mathrm{GGN}~\frac{\partial Q}{\partial x} - 2\Omega_0 k Q \biggr] \, , </math>

<math>~y</math> Component

<math>~ v ( \kappa^2 - \sigma^2_\mathrm{GGN})</math>

<math>~=</math>

<math>~2B~\frac{\partial Q}{\partial x} - \sigma_\mathrm{GGN} k Q \, , </math>

<math>~z</math> Component

<math>~ ~w </math>

<math>~=</math>

<math>~- i \biggl(\frac{1}{\sigma_\mathrm{GGN}}\biggr) \frac{\partial Q}{\partial z} \, . </math>

where,

<math>~\kappa^2 \equiv \frac{2{\dot\varphi}_0}{\varpi} \biggl[ \frac{\partial (\varpi^2\dot\varphi_0)}{\partial\varpi} \biggr]</math>

        and        

<math>~{\bar\sigma} \equiv (\sigma + m{\dot\varphi}_0) </math>


Formulation of Eigenvalue Problem

See Also

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation