Difference between revisions of "User:Tohline/Appendix/Ramblings/T3Integrals"

From VistrailsWiki
Jump to navigation Jump to search
(Begin definition of T3 coordinates)
 
(→‎Definition: Continue defining T3 coordinates)
Line 12: Line 12:
</math>
</math>
</div>
</div>
the two key "T3" coordinates can be written as,
the two key "T3" coordinates will be written as,


<table align="center" border="0" cellpadding="2">
<table align="center" border="0" cellpadding="2">
Line 18: Line 18:
   <td align="right">
   <td align="right">
<math>
<math>
\chi_1
\lambda_1
</math>
</math>
   </td>
   </td>
Line 25: Line 25:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>B \varpi \cosh\Zeta</math>
<math>\varpi \cosh\Zeta = ( \varpi^2 + q^2z^2 )^{1/2}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 32: Line 32:
   <td align="right">
   <td align="right">
<math>
<math>
\chi_2
\lambda_2
</math>
</math>
   </td>
   </td>
Line 39: Line 39:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>\frac{A \sinh\Zeta}{ \varpi^{q^2-1}}</math>
<math>\varpi [\sinh\Zeta ]^{1/(1-q^2)} = \biggl[\frac{\varpi^{q^2}}{qz}\biggr]^{1/(q^2-1)}</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>
B ( \varpi^2 + q^2z^2 )^{1/2} = qB \xi_1
</math>
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>
\frac{Aqz}{\varpi^{q^2}} = Aq \biggl[\frac{1}{\tan\xi_2} \biggr]^{q^2}
</math>
   </td>
   </td>
</tr>
</tr>
</table>
</table>


Here are a variety of relevant partial derivatives:   
Here are some relevant partial derivatives (<font color="green">there may be a mistake in the derivation of the partials of <math>\lambda_2</math></font>):   


<table align="center" border="1" cellpadding="5">
<table align="center" border="1" cellpadding="5">
Line 98: Line 70:
<tr>
<tr>
   <td align="center">
   <td align="center">
<math>\chi_1</math>
<math>\lambda_1</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>
<math>
\biggl(\frac{B^2}{\chi_1}\biggr) x
\frac{x}{\lambda_1}
</math>
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>
<math>
\biggl(\frac{B^2}{\chi_1}\biggr) y
\frac{y}{\lambda_1}
</math>
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>
<math>
\biggl(\frac{B^2}{\chi_1}\biggr) q^2 z
\frac{q^2}{\lambda_1}
</math>
</math>
   </td>
   </td>
Line 119: Line 91:
<tr>
<tr>
   <td align="center">
   <td align="center">
<math>\chi_2</math>
<math>\lambda_2</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>
<math>
- \biggl( \frac{q^3 A z}{\varpi^{q^2+2}} \biggr) x
\frac{1}{(q^2-1)} \biggl[ \frac{\varpi^{q^2-1}}{\sinh\Zeta} \biggr]^{q^2/(q^2-1)} \biggl( \frac{q^3 z}{\varpi^{q^2+2}} \biggr) x
</math><br />
<math>
=\frac{q^2}{(q^2-1)} \biggl[ \frac{\varpi}{qz} \biggr]^{1/(q^2-1)} \biggl( \frac{x}{\varpi} \biggr)
</math>
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>
<math>
- \biggl( \frac{q^3 A z}{\varpi^{q^2+2}} \biggr) y
\frac{1}{(q^2-1)} \biggl[ \frac{\varpi^{q^2-1}}{\sinh\Zeta} \biggr]^{q^2/(q^2-1)} \biggl( \frac{q^3 z}{\varpi^{q^2+2}} \biggr) y
</math><br />
<math>
=\frac{q^2}{(q^2-1)} \biggl[ \frac{\varpi}{qz} \biggr]^{1/(q^2-1)}  \biggl( \frac{y}{\varpi} \biggr)
</math>
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>
<math>
\frac{qA}{\varpi^{q^2}}
- \frac{1}{(q^2-1)} \biggl[ \frac{\varpi^{q^2-1}}{\sinh\zeta} \biggr]^{q^2/(q^2-1)} \frac{q}{\varpi^{q^2}}
</math><br />
<math>
=- \frac{q}{(q^2-1)} \biggl[ \frac{\varpi}{qz} \biggr]^{q^2/(q^2-1)}  
</math>
</math>
   </td>
   </td>
Line 140: Line 121:
<tr>
<tr>
   <td align="center">
   <td align="center">
<math>\chi_3</math>
<math>\lambda_3</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>
<math>
- \biggl( \frac{1}{\varpi^{2}} \biggr) y
- \frac{y}{\varpi^{2}}
</math>
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>
<math>
+ \biggl( \frac{1}{\varpi^{2}} \biggr) x
+ \frac{x}{\varpi^{2}}
</math>
</math>
   </td>
   </td>
Line 160: Line 141:
</table>
</table>


The scale factors are,
The scale factors are (<font color="green">there is a mistake in the derivation of <math>h_2</math></font>),


<table align="center" border="0" cellpadding="5">
<table align="center" border="0" cellpadding="5">
Line 172: Line 153:
   <td align="left">
   <td align="left">
<math>
<math>
\biggl[ \biggl( \frac{\partial\chi_1}{\partial x} \biggr)^2 + \biggl( \frac{\partial\chi_1}{\partial y} \biggr)^2 + \biggl( \frac{\partial\chi_1}{\partial z} \biggr)^2 \biggr]^{-1}
\biggl[ \biggl( \frac{\partial\lambda_1}{\partial x} \biggr)^2 + \biggl( \frac{\partial\lambda_1}{\partial y} \biggr)^2 + \biggl( \frac{\partial\lambda_1}{\partial z} \biggr)^2 \biggr]^{-1}
</math>
</math>
   </td>
   </td>
Line 180: Line 161:
   <td align="left">
   <td align="left">
<math>
<math>
\frac{\chi_1^2}{B^4 (\varpi^2 + q^4 z^2)}  
\frac{\lambda_1^2}{(\varpi^2 + q^4 z^2)}  
</math>
</math>
   </td>
   </td>
Line 188: Line 169:
   <td align="left">
   <td align="left">
<math>
<math>
\frac{\chi_1^2 \ell^2}{B^4}
\lambda_1^2 \ell^2  
</math>
</math>
   </td>
   </td>
Line 202: Line 183:
   <td align="left">
   <td align="left">
<math>
<math>
\biggl[ \biggl( \frac{\partial\chi_2}{\partial x} \biggr)^2 + \biggl( \frac{\partial\chi_2}{\partial y} \biggr)^2 + \biggl( \frac{\partial\chi_2}{\partial z} \biggr)^2 \biggr]^{-1}
\biggl[ \biggl( \frac{\partial\lambda_2}{\partial x} \biggr)^2 + \biggl( \frac{\partial\lambda_2}{\partial y} \biggr)^2 + \biggl( \frac{\partial\lambda_2}{\partial z} \biggr)^2 \biggr]^{-1}
</math>
</math>
   </td>
   </td>
Line 210: Line 191:
   <td align="left">
   <td align="left">
<math>
<math>
\frac{z^2 \varpi^2 }{\chi_2^2 (\varpi^2 + q^4 z^2)}  
\frac{(q^2-1)}{q^2} [\sinh\Zeta]^{2q^2/(q^2-1)} \frac{\varpi^2 }{(\varpi^2 + q^4 z^2)}  
</math>
</math>
   </td>
   </td>
Line 218: Line 199:
   <td align="left">
   <td align="left">
<math>
<math>
\frac{z^2 \varpi^2 \ell^2}{\chi_2^2}
\frac{(q^2-1)}{q^2} \biggl[\frac{\varpi}{\lambda_2} \biggr]^{2q^2} \varpi^2 \ell^2  
</math>
</math>
   </td>
   </td>
Line 232: Line 213:
   <td align="left">
   <td align="left">
<math>
<math>
\biggl[ \biggl( \frac{\partial\chi_3}{\partial x} \biggr)^2 + \biggl( \frac{\partial\chi_3}{\partial y} \biggr)^2 + \biggl( \frac{\partial\chi_3}{\partial z} \biggr)^2 \biggr]^{-1}
\biggl[ \biggl( \frac{\partial\lambda_3}{\partial x} \biggr)^2 + \biggl( \frac{\partial\lambda_3}{\partial y} \biggr)^2 + \biggl( \frac{\partial\lambda_3}{\partial z} \biggr)^2 \biggr]^{-1}
</math>
</math>
   </td>
   </td>
Line 260: Line 241:


The position vector is,
The position vector is,
<!--
<table align="center" border="0" cellpadding="5">
<table align="center" border="0" cellpadding="5">
<tr>
<tr>
Line 284: Line 268:
</table>
</table>


<!--
==Other Potentially Useful Differential Relations==
==Other Potentially Useful Differential Relations==



Revision as of 02:26, 23 May 2010

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Integrals of Motion in T3 Coordinates

Motivated by the HNM82 derivation, in an accompanying chapter we have introduced a new T2 Coordinate System and have outlined a few of its properties. Here we offer a modest redefinition of the second radial coordinate in an effort to bring even more symmetry to the definition of the position vector, <math>\vec{x}</math>.


Definition

By defining the dimensionless angle,

<math> \Zeta \equiv \sinh^{-1}\biggl( \frac{qz}{\varpi} \biggr) , </math>

the two key "T3" coordinates will be written as,

<math> \lambda_1 </math>

<math>\equiv</math>

<math>\varpi \cosh\Zeta = ( \varpi^2 + q^2z^2 )^{1/2}</math>

      and      

<math> \lambda_2 </math>

<math>\equiv</math>

<math>\varpi [\sinh\Zeta ]^{1/(1-q^2)} = \biggl[\frac{\varpi^{q^2}}{qz}\biggr]^{1/(q^2-1)}</math>

Here are some relevant partial derivatives (there may be a mistake in the derivation of the partials of <math>\lambda_2</math>):

 

<math> \frac{\partial}{\partial x} </math>

<math> \frac{\partial}{\partial y} </math>

<math> \frac{\partial}{\partial z} </math>

<math>\lambda_1</math>

<math> \frac{x}{\lambda_1} </math>

<math> \frac{y}{\lambda_1} </math>

<math> \frac{q^2}{\lambda_1} </math>

<math>\lambda_2</math>

<math> \frac{1}{(q^2-1)} \biggl[ \frac{\varpi^{q^2-1}}{\sinh\Zeta} \biggr]^{q^2/(q^2-1)} \biggl( \frac{q^3 z}{\varpi^{q^2+2}} \biggr) x </math>
<math> =\frac{q^2}{(q^2-1)} \biggl[ \frac{\varpi}{qz} \biggr]^{1/(q^2-1)} \biggl( \frac{x}{\varpi} \biggr) </math>

<math> \frac{1}{(q^2-1)} \biggl[ \frac{\varpi^{q^2-1}}{\sinh\Zeta} \biggr]^{q^2/(q^2-1)} \biggl( \frac{q^3 z}{\varpi^{q^2+2}} \biggr) y </math>
<math> =\frac{q^2}{(q^2-1)} \biggl[ \frac{\varpi}{qz} \biggr]^{1/(q^2-1)} \biggl( \frac{y}{\varpi} \biggr) </math>

<math> - \frac{1}{(q^2-1)} \biggl[ \frac{\varpi^{q^2-1}}{\sinh\zeta} \biggr]^{q^2/(q^2-1)} \frac{q}{\varpi^{q^2}} </math>
<math> =- \frac{q}{(q^2-1)} \biggl[ \frac{\varpi}{qz} \biggr]^{q^2/(q^2-1)} </math>

<math>\lambda_3</math>

<math> - \frac{y}{\varpi^{2}} </math>

<math> + \frac{x}{\varpi^{2}} </math>

<math> 0 </math>

The scale factors are (there is a mistake in the derivation of <math>h_2</math>),

<math>h_1^2</math>

<math>=</math>

<math> \biggl[ \biggl( \frac{\partial\lambda_1}{\partial x} \biggr)^2 + \biggl( \frac{\partial\lambda_1}{\partial y} \biggr)^2 + \biggl( \frac{\partial\lambda_1}{\partial z} \biggr)^2 \biggr]^{-1} </math>

<math>=</math>

<math> \frac{\lambda_1^2}{(\varpi^2 + q^4 z^2)} </math>

<math>=</math>

<math> \lambda_1^2 \ell^2 </math>

<math>h_2^2</math>

<math>=</math>

<math> \biggl[ \biggl( \frac{\partial\lambda_2}{\partial x} \biggr)^2 + \biggl( \frac{\partial\lambda_2}{\partial y} \biggr)^2 + \biggl( \frac{\partial\lambda_2}{\partial z} \biggr)^2 \biggr]^{-1} </math>

<math>=</math>

<math> \frac{(q^2-1)}{q^2} [\sinh\Zeta]^{2q^2/(q^2-1)} \frac{\varpi^2 }{(\varpi^2 + q^4 z^2)} </math>

<math>=</math>

<math> \frac{(q^2-1)}{q^2} \biggl[\frac{\varpi}{\lambda_2} \biggr]^{2q^2} \varpi^2 \ell^2 </math>

<math>h_3^2</math>

<math>=</math>

<math> \biggl[ \biggl( \frac{\partial\lambda_3}{\partial x} \biggr)^2 + \biggl( \frac{\partial\lambda_3}{\partial y} \biggr)^2 + \biggl( \frac{\partial\lambda_3}{\partial z} \biggr)^2 \biggr]^{-1} </math>

<math>=</math>

<math> \varpi^2 </math>

 

 

where,        <math>\ell \equiv (\varpi^2 + q^2 z^2)^{-1/2}</math>.


The position vector is,


See Also

 

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation