Difference between revisions of "User:Tohline/Appendix/Ramblings/T3Integrals"

From VistrailsWiki
Jump to navigation Jump to search
m (→‎Definition: fix typo in position vector definition)
(→‎Orthogonality Condition: Check various minors of the determinant a la MF53)
 
(36 intermediate revisions by 2 users not shown)
Line 44: Line 44:
</table>
</table>


===Relevant Partial Derivatives===
Here are some relevant partial derivatives:   
Here are some relevant partial derivatives:   


Line 84: Line 85:
   <td align="center">
   <td align="center">
<math>
<math>
\frac{q^2}{\lambda_1}
\frac{q^2 z}{\lambda_1}
</math>
</math>
   </td>
   </td>
Line 99: Line 100:
<math>
<math>
=\frac{q^2}{(q^2-1)} \biggl[ \frac{\varpi^{q^2}}{qz} \biggr]^{1/(q^2-1)} \biggl( \frac{x}{\varpi^2} \biggr)
=\frac{q^2}{(q^2-1)} \biggl[ \frac{\varpi^{q^2}}{qz} \biggr]^{1/(q^2-1)} \biggl( \frac{x}{\varpi^2} \biggr)
</math><br />
<math>
=\frac{q^2}{(q^2-1)} \biggl[ \frac{\varpi}{qz} \biggr]^{1/(q^2-1)} \biggl( \frac{x}{\varpi} \biggr)
</math>
</math>
   </td>
   </td>
Line 107: Line 111:
<math>
<math>
=\frac{q^2}{(q^2-1)} \biggl[ \frac{\varpi^{q^2}}{qz} \biggr]^{1/(q^2-1)}  \biggl( \frac{y}{\varpi^2} \biggr)
=\frac{q^2}{(q^2-1)} \biggl[ \frac{\varpi^{q^2}}{qz} \biggr]^{1/(q^2-1)}  \biggl( \frac{y}{\varpi^2} \biggr)
</math><br />
<math>
=\frac{q^2}{(q^2-1)} \biggl[ \frac{\varpi}{qz} \biggr]^{1/(q^2-1)}  \biggl( \frac{y}{\varpi} \biggr)
</math>
</math>
   </td>
   </td>
Line 115: Line 122:
<math>
<math>
=- \frac{1}{(q^2-1)} \biggl[ \frac{\varpi^{q^2}}{qz} \biggr]^{1/(q^2-1)} \frac{1}{z}
=- \frac{1}{(q^2-1)} \biggl[ \frac{\varpi^{q^2}}{qz} \biggr]^{1/(q^2-1)} \frac{1}{z}
</math>
<br />
<math>
=- \frac{1}{(q^2-1)} \biggl[ \frac{\varpi^{q^2}}{qz^{q^2}} \biggr]^{1/(q^2-1)}
</math>
</math>
   </td>
   </td>
Line 141: Line 152:
</table>
</table>


The scale factors are,
Alternatively, partials can be taken with respect to the cylindrical coordinates, <math>\varpi</math>, <math>z</math> and <math>\phi</math>.  (Incidentally, I have reversed the traditional order of the <math>\phi</math> and <math>z</math> coordinates in an attempt to parallelize structure between cylindrical and T3 coordinates since <math>\lambda_3 \equiv \phi</math>.)


<table align="center" border="0" cellpadding="5">
<table align="center" border="1" cellpadding="5">
<tr>
<tr>
   <td align="right">
   <td align="center">
<math>h_1^2</math>
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>
<math>
\biggl[ \biggl( \frac{\partial\lambda_1}{\partial x} \biggr)^2 + \biggl( \frac{\partial\lambda_1}{\partial y} \biggr)^2 + \biggl( \frac{\partial\lambda_1}{\partial z} \biggr)^2 \biggr]^{-1}
\frac{\partial}{\partial \varpi}
</math>
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>
<math>
\lambda_1^2 \ell^2
\frac{\partial}{\partial z}
</math>
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
&nbsp;
<math>
  </td>
\frac{\partial}{\partial \phi}
  <td align="left">
</math>
&nbsp;
   </td>
   </td>
</tr>
</tr>


<tr>
<tr>
   <td align="right">
   <td align="center">
<math>h_2^2</math>
<math>{\lambda_1}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>
<math>
\biggl[ \biggl( \frac{\partial\lambda_2}{\partial x} \biggr)^2 + \biggl( \frac{\partial\lambda_2}{\partial y} \biggr)^2 + \biggl( \frac{\partial\lambda_2}{\partial z} \biggr)^2 \biggr]^{-1}
\frac{\varpi}{\lambda_1}
</math>
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>
<math>
(q^2-1)^2 \biggl(\frac{\varpi z \ell}{\lambda_2} \biggr)^2
\frac{q^2 z}{\lambda_1}
</math>
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
&nbsp;
<math>
  </td>
0
  <td align="left">
</math>
&nbsp;
   </td>
   </td>
</tr>
</tr>


<tr>
<tr>
   <td align="right">
   <td align="center">
<math>h_3^2</math>
<math>\lambda_2</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>
<math>
\biggl[ \biggl( \frac{\partial\lambda_3}{\partial x} \biggr)^2 + \biggl( \frac{\partial\lambda_3}{\partial y} \biggr)^2 + \biggl( \frac{\partial\lambda_3}{\partial z} \biggr)^2 \biggr]^{-1}
\frac{q^2}{q^2-1} \left( \frac{\varpi}{qz} \right)^{1/(q^2-1)}
</math>
</math><br />
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>
<math>
\varpi^2  
-\frac{1}{q^2-1} \left( \frac{\varpi^{q^2}}{qz^{q^2}} \right)^{1/(q^2-1)}
</math>
</math><br />
   </td>
   </td>
   <td align="center">
   <td align="center">
&nbsp;
<math>
  </td>
0
  <td align="left">
</math><br />
&nbsp;
   </td>
   </td>
</tr>
</tr>


<tr>
<tr>
   <td align="left" colspan="7">
   <td align="center">
where, &nbsp; &nbsp; &nbsp; &nbsp;<math>\ell \equiv (\varpi^2 + q^2 z^2)^{-1/2}</math>.
<math>\lambda_3</math>
   </td>
   </td>
</tr>
  <td align="center">
</table>
<math>
 
0
 
</math>
The position vector is,
 
<table align="center" border="0" cellpadding="5">
<tr>
  <td align="right">
<math>\vec{x}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>
<math>
\hat{i}x + \hat{j}y + \hat{k}z
0
</math>
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>
<math>
\hat{e}_1 (h_1 \lambda_1) + \hat{e}_2 (h_2 \lambda_2) .
1
</math>
</math>
   </td>
   </td>
Line 262: Line 240:
</table>
</table>


 
Furthermore, the inverted partials are
<!--
 
 
==Other Potentially Useful Differential Relations==
 
In examining the equation of motion and searching for analytic representations of the <math>3^\mathrm{rd}</math> integral of motion, we will need to know how each of the scale factors varies along each of the coordinate directions.  Since our T2 coordinate system is an orthogonal system of coordinates, in general we can write,
<div align="center">
<math>
\frac{\partial h_k}{\partial\chi_j} = \sum_{i=1}^3 h_j^2 \biggl( \frac{\partial\chi_j}{\partial x_i} \biggr) \frac{\partial h_k}{\partial x_i} ,
</math>
</div>
where <math>x_i</math> are the three Cartesian coordinates.  Analytic expressions for the first partial derivative in each term on the RHS, <math>\partial\chi_j/\partial x_i</math>, can be obtained from the table shown above.  To derive expressions for the second partial derivative in each RHS term, the following differential relations also will be useful:


<table align="center" border="1" cellpadding="5">
<table align="center" border="1" cellpadding="5">
Line 283: Line 249:
   <td align="center">
   <td align="center">
<math>
<math>
\frac{\partial}{\partial x}
\frac{\partial}{\partial \lambda_1}
</math>
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>
<math>
\frac{\partial}{\partial y}
\frac{\partial}{\partial \lambda_2}
</math>
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>
<math>
\frac{\partial}{\partial z}
\frac{\partial}{\partial \lambda_3}
</math>
</math>
   </td>
   </td>
Line 300: Line 266:
<tr>
<tr>
   <td align="center">
   <td align="center">
<math>\varpi</math>
<math>{\varpi}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>
<math>
\frac{x}{\varpi}
\varpi \ell^2 \lambda_1
</math>
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>
<math>
\frac{y}{\varpi}
(q^2-1) q^2 \varpi z^2 \ell^2 / \lambda_2
</math>
</math>
   </td>
   </td>
Line 321: Line 287:
<tr>
<tr>
   <td align="center">
   <td align="center">
<math>\ell</math>
<math>z</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>
<math>
- x\ell^3
q^2 z \ell^2 \lambda_1
</math>
</math><br />
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>
<math>
- y \ell^3
- (q^2-1) \varpi^2 z \ell^2 / \lambda_2
</math>
</math><br />
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>
<math>
- q^4 z \ell^3
0
</math>
</math><br />
   </td>
   </td>
</tr>
</tr>
</table>
Putting all of these expressions together, we derive the following:


<table align="center" border="1" cellpadding="5">
<tr>
<tr>
   <td align="center">
   <td align="center">
&nbsp;
<math>\phi</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>
<math>
\frac{\partial}{\partial \chi_1}
0
</math>
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>
<math>
\frac{\partial}{\partial \chi_2}
0
</math>
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>
<math>
\frac{\partial}{\partial \chi_3}
1
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
===Scale Factors===
The scale factors are,


<table align="center" border="0" cellpadding="5">
<tr>
<tr>
  <td align="right">
<math>h_1^2</math>
  </td>
   <td align="center">
   <td align="center">
<math>h_1</math>
<math>=</math>
  </td>
  <td align="left">
<math>
\biggl[ \biggl( \frac{\partial\lambda_1}{\partial x} \biggr)^2 + \biggl( \frac{\partial\lambda_1}{\partial y} \biggr)^2 + \biggl( \frac{\partial\lambda_1}{\partial z} \biggr)^2 \biggr]^{-1}
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>
<math>
\frac{\ell}{B^2} - h_1^2 \ell^3 (\varpi^2 + q^6 z^2)
\lambda_1^2 \ell^2  
</math>
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
&nbsp;
  </td>
  <td align="left">
&nbsp;
  </td>
</tr>
<tr>
  <td align="right">
<math>h_2^2</math>
  </td>
  <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>
<math>
(1-q^2)q^2 h_1 h_2^2 \ell^2 \chi_2
\biggl[ \biggl( \frac{\partial\lambda_2}{\partial x} \biggr)^2 + \biggl( \frac{\partial\lambda_2}{\partial y} \biggr)^2 + \biggl( \frac{\partial\lambda_2}{\partial z} \biggr)^2 \biggr]^{-1}
</math>
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>
<math>
0
(q^2-1)^2 \biggl(\frac{\varpi z \ell}{\lambda_2} \biggr)^2
</math>
</math>
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
&nbsp;
   </td>
   </td>
</tr>
</tr>


<tr>
<tr>
  <td align="right">
<math>h_3^2</math>
  </td>
   <td align="center">
   <td align="center">
<math>h_2</math>
<math>=</math>
   </td>
   </td>
   <td align="center">
   <td align="left">
<math>
<math>
q^2 h_1^2 h_2 \ell^2 \chi_1
\biggl[ \biggl( \frac{\partial\lambda_3}{\partial x} \biggr)^2 + \biggl( \frac{\partial\lambda_3}{\partial y} \biggr)^2 + \biggl( \frac{\partial\lambda_3}{\partial z} \biggr)^2 \biggr]^{-1}
</math>
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>
<math>
- \frac{q^4 h_2 \ell^4 z^2}{\chi_2} \biggl[ ( \varpi^2 + q^2 z^2 ) + ( \varpi^2 + q^4 z^2 ) \biggr]
\varpi^2  
</math>
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>
&nbsp;
0
  </td>
</math>
  <td align="left">
&nbsp;
  </td>
</tr>
 
<tr>
  <td align="left" colspan="7">
where, &nbsp; &nbsp; &nbsp; &nbsp;<math>\ell \equiv (\varpi^2 + q^4 z^2)^{-1/2}</math>.
   </td>
   </td>
</tr>
</tr>
</table>
</table>


==Time Derivatives==
===Direction Cosines===
Assuming no mistakes have been made in our derivation of the above expressions, the time-derivative of the two key scale factors become,
The following table contains expressions for the [[User:Tohline/Appendix/Ramblings/DirectionCosines#Basic_Definitions_and_Relations|nine direction cosines]].
 
<table border="1" align="center" cellpadding="8">
<tr>
  <td align="center" colspan="4">
<font color="darkblue">Direction Cosines for T3 Coordinates</font><br/>
<math>\gamma_{ni} = h_n\frac{\partial\lambda_n}{\partial x_i}</math>
  </td>
</tr>


<table align="center" border="0" cellpadding="3">
<tr>
  <td align="center">
&nbsp;
  </td>
  <td align="center" colspan="3">
'''<math>i</math>'''
  </td>
</tr>
 
<tr>
  <td align="center" valign="middle" rowspan="3">
'''<math>n</math>'''
  </td>
  <td align="center" colspan="1">
<math>\ell x</math>
  </td>
  <td align="center" colspan="1">
<math>\ell y</math>
  </td>
  <td align="center" colspan="1">
<math>q^2 \ell z</math>
  </td>
</tr>
 
<tr>
  <td align="center" colspan="1">
<math>\frac{q^2 x z \ell}{\varpi}</math>
  </td>
  <td align="center" colspan="1">
<math>\frac{q^2 y z \ell}{\varpi}</math>
  </td>
  <td align="center" colspan="1">
<math>- \varpi \ell</math>
  </td>
</tr>
 
<tr>
  <td align="center" colspan="1">
<math>- \frac{y}{\varpi}</math>
  </td>
  <td align="center" colspan="1">
<math>+\frac{x}{\varpi}</math>
  </td>
  <td align="center" colspan="1">
<math>0</math>
  </td>
</tr>
 
<tr>
  <td align="center" colspan="4">
where:
<math>\ell \equiv (\varpi^2 + q^4 z^2)^{-1/2}</math>
  </td>
</tr>
</table>
 
===Orthogonality Condition===
Next, let's use the example orthogonality condition [[User:Tohline/Appendix/Ramblings/DirectionCosines#Orthogonality|derived elsewhere in connection with our overview of direction cosines]].  Specifically, let's see if [[User:Tohline/Appendix/Ramblings/DirectionCosines#DC.02|Equation DC.02]] is satisfied.
<table align="center" border="0" cellpadding="5">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>\frac{dh_1}{dt}</math>
<math>
\frac{\partial\lambda_1}{\partial \varpi} \cdot  \frac{\partial\lambda_2}{\partial \varpi} +
\frac{\partial\lambda_1}{\partial z} \cdot \frac{\partial\lambda_2}{\partial z}
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>=</math>
<math>
=
</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>\frac{\partial h_1}{\partial\chi_1} \dot{\chi}_1 + \frac{\partial h_1}{\partial\chi_2} \dot{\chi}_2</math>
<math>
\frac{\varpi}{\lambda_1} \biggl[ \frac{q^2}{q^2-1} \left( \frac{\varpi}{qz} \right)^{1/(q^2-1)}
\biggr] -
\frac{q^2z}{\lambda_1} \biggl[ \frac{1}{q^2-1} \left( \frac{\varpi^{q^2}}{qz^{q^2}} \right)^{1/(q^2-1)}
\biggr]
</math>
   </td>
   </td>
</tr>
</tr>
Line 430: Line 520:
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>=</math>
<math>
=
</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>
<math>
\biggl[ \frac{\ell}{B^2} - h_1^2 \ell^3 (\varpi^2 + q^6 z^2) \biggr]\dot{\chi}_1  + \biggl[ (1-q^2)q^2 h_1 h_2^2 \ell^2 \chi_2 \biggr]\dot{\chi}_2  ;
\frac{q^2}{(q^2-1)\lambda_1} \biggl\{ \varpi\biggl[ \left( \frac{\varpi}{qz} \right)^{1/(q^2-1)}
\biggr] -
z \biggl[ \left( \frac{\varpi^{q^2}}{qz^{q^2}} \right)^{1/(q^2-1)}
\biggr] \biggr\}
</math>
</math>
   </td>
   </td>
Line 441: Line 536:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>\frac{dh_2}{dt}</math>
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>=</math>
<math>
=
</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>\frac{\partial h_2}{\partial\chi_1} \dot{\chi}_1 + \frac{\partial h_2}{\partial\chi_2} \dot{\chi}_2</math>
<math>
\frac{q^2}{(q^2-1)\lambda_1} \biggl[ q^{-1/(q^2-1)} \varpi^{1 + 1/(q^2-1)} z^{-1/(q^2-1)} - q^{-1/(q^2-1)} \varpi^{q^2/(q^2-1)} z^{1-q^2/(q^2-1)} \biggr]
</math>
   </td>
   </td>
</tr>
</tr>
Line 456: Line 555:
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>=</math>
<math>
=
</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>
<math>
\biggl[ q^2 h_1^2 h_2 \ell^2 \chi_1 \biggr]\dot{\chi}_1  - \frac{q^4 h_2 \ell^4 z^2}{\chi_2} \biggl[ ( \varpi^2 + q^2 z^2 ) + ( \varpi^2 + q^4 z^2 ) \biggr]\dot{\chi}_2 .
0 .
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
</table>
Hence, the key orthogonality condition defined by [[User:Tohline/Appendix/Ramblings/DirectionCosines#DC.02|Equation DC.02]] is satisfied. MF53 also gives us relationships that should apply ''between'' the various direction cosines if the coordinate system is orthogonal.  Let's check a few cases to see whether <math>\gamma_{mn} = M_{mn}</math>, where "<math>M_{mn}</math> is the minor of <math>\gamma_{mn}</math> in the determinant <math>|\gamma_{mn}|</math>":
<div align="center">
<math>
M_{11} = \gamma_{22}\gamma_{33} - \gamma_{23}\gamma_{32} = - (-\varpi\ell)\frac{x}{\varpi} = + \ell x .
</math> <br /><br />


If the potential is only a function of the first T2 coordinate, <math>\chi_1</math>, then the <math>2^\mathrm{nd}</math> component of the equation of motion states,
<math>
M_{12} = \gamma_{23}\gamma_{31} - \gamma_{21}\gamma_{33} = -\varpi\ell \biggl(-\frac{y}{\varpi}\biggr) = +\ell y .
</math> <br /><br />


<div align="center">
<math>
<math>
\frac{d}{dt}( h_2\dot{\chi}_2 ) + h_1 \dot{\chi}_1 \biggl[ \dot{\chi}_2 \frac{1}{h_1}\frac{\partial h_2}{\partial \chi_1} - \dot{\chi}_2 \frac{1}{h_2}\frac{\partial h_1}{\partial \chi_2} \biggr] = 0 .
M_{13} = \gamma_{21}\gamma_{32} - \gamma_{22}\gamma_{31} = \biggl( \frac{q^2 x z \ell}{\varpi} \biggr) \frac{x}{\varpi} - \biggl( \frac{q^2 y z \ell}{\varpi} \biggr) \biggl( -\frac{y}{\varpi} \biggr) = q^2 \ell z.
</math>
</math> <br /><br />
</div>


In other words,
<div align="center">
<math>
<math>
\frac{d}{dt}( h_2\dot{\chi}_2 ) = q^2 h_1^2 h_2 \ell^2 \dot{\chi}_1 \chi_2^2\frac{d}{dt}\biggl(\frac{\chi_1}{\chi_2}\biggr) .
M_{31} = \gamma_{12}\gamma_{23} - \gamma_{13}\gamma_{22} = \ell y (-\varpi\ell) - q^2 \ell z \biggl(\frac{q^2 yz\ell}{\varpi}\biggr) = - \frac{y \ell^2}{\varpi} \biggl( \varpi^2 + q^4 z^2 \biggr) = - \frac{y}{\varpi} .
</math>
</math> <br /><br />
</div>


And the time derivative of a quantity that resembles the traditional angular momentum is,
<div align="center">
<math>
<math>
\frac{d}{dt}( h_2^2 \dot{\chi}_2 ) = \frac{q^2 \ell^2 h_2^2}{\chi_2} \biggl\{ (h_1 \chi_2 \dot{\chi}_1)^2 - q^2 \ell^2 z^2 \biggl[(\varpi^2 + q^2 z^2) + (\varpi^2 + q^4 z^2) \biggr]\dot{\chi}_2^2 \biggr\} .
M_{33} = \gamma_{11}\gamma_{22} - \gamma_{12}\gamma_{21} = \ell x \biggr(\frac{q^2 y z \ell}{\varpi} \biggr) - \ell y \biggr(\frac{q^2 x z \ell}{\varpi} \biggr) = 0 .
</math>
</math>
</div>
</div>
All of these beautifully obey the relationship, <math>\gamma_{mn} = M_{mn}</math>.


===Position Vector===
The position vector is,


=First Special Case (quadratic)=
<table align="center" border="0" cellpadding="5">
As has been [[User:Tohline/Appendix/Ramblings/T1Coordinates#First_Special_Case_.28quadratic.29|discussed in an accompanying chapter]], when <math>q^2=2</math> the product of <math>\chi_1</math> and <math>\chi_2</math> shows up as a key quantity when inverting the coordinate definitions.  In particular, by defining,
<div align="center">
<math>\Chi_q \equiv \frac{2\chi_1 \chi_2}{AB} = 2\cosh \Zeta \sinh\Zeta = \sinh(2\Zeta) ,</math>
</div>
and its companion,
<div align="center">
<math>\Upsilon_q \equiv \sqrt{1 + \Chi_q^2} = \cosh^2\Zeta + \sinh^2\Zeta = \cosh(2\Zeta) ,</math>
</div>
 
we can write,
 
<table align="center" border="1" cellpadding="5">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>\vec{x}</math>
  </td>
  <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>
<math>
\varpi^2
\hat{i}x + \hat{j}y + \hat{k}z
</math>
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>
<math>
=
\hat{e}_1 (h_1 \lambda_1) + \hat{e}_2 (h_2 \lambda_2) .
</math>
</math>
   </td>
   </td>
   <td align="left">
</tr>
</table>
 
==Vector Derivatives==
 
For orthogonal coordinate systems, the time-rate-of-change of the three unit vectors are given by the expressions,
<table align="center" border="0" cellpadding="3">
<tr>
   <td align="right">
<math>
<math>
\frac{A^2}{2\chi_2^2} \biggl[ \sqrt{1 + \Chi_q^2} - 1 \biggr]
\frac{d}{dt}\hat{e}_1
</math>
</math>
   </td>
   </td>
Line 525: Line 634:
   <td align="left">
   <td align="left">
<math>
<math>
\biggl( \frac{A}{\chi_2} \biggr)^2 \biggl[\frac{1}{2} (\Upsilon - 1) \biggr]
\hat{e}_2 A + \hat{e}_3 B
</math>
  </td>
</tr>
<tr>
  <td align="right"> 
<math>
\frac{d}{dt}\hat{e}_2
</math>
</math>
   </td>
   </td>
Line 535: Line 651:
   <td align="left">
   <td align="left">
<math>
<math>
\biggl( \frac{A}{\chi_2} \biggr)^2 \sinh^2\Zeta
- \hat{e}_1 A + \hat{e}_3 C
</math>
  </td>
</tr>
<tr>
  <td align="right"> 
<math>
\frac{d}{dt}\hat{e}_3
</math>
</math>
   </td>
   </td>
Line 545: Line 668:
   <td align="left">
   <td align="left">
<math>
<math>
\biggl( \frac{\chi_1}{B} \biggr)^2 \frac{1}{\cosh^2\Zeta}  
- \hat{e}_1 B - \hat{e}_2 C
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>


where,
<table align="center" border="0" cellpadding="3">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>
<math>
z^2
A
</math>
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>
<math>
=
\equiv
</math>
</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>
<math>
\frac{A^2}{4 \chi_2^2}\biggl[ \frac{1}{2} \Chi_q^2 +1 -  \sqrt{1 + \Chi_q^2}\biggr]
\frac{\dot{\lambda}_2}{h_1} \frac{\partial h_2}{\partial \lambda_1} -
\frac{\dot{\lambda}_1}{h_2} \frac{\partial h_1}{\partial \lambda_2}
</math>
  </td>
</tr>
<tr>
  <td align="right"> 
<math>
B
</math>
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>
<math>
=
\equiv
</math>
</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>
<math>
\frac{1}{2} \biggl( \frac{A}{\chi_2} \biggr)^2 \biggl[\frac{1}{2}(\Upsilon - 1)\biggr]^2
\frac{\dot{\lambda}_3}{h_1} \frac{\partial h_3}{\partial \lambda_1} -
\frac{\dot{\lambda}_1}{h_3} \frac{\partial h_1}{\partial \lambda_3}
</math>
  </td>
</tr>
<tr>
  <td align="right"> 
<math>
C
</math>
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>
<math>
=
\equiv
</math>
</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>
<math>
\frac{1}{2} \biggl( \frac{A}{\chi_2} \biggr)^2 \sinh^4\Zeta
\frac{\dot{\lambda}_3}{h_2} \frac{\partial h_3}{\partial \lambda_2} -
\frac{\dot{\lambda}_2}{h_3} \frac{\partial h_2}{\partial \lambda_3}
</math>
</math>
   </td>
   </td>
   <td align="center">
</tr>
</table>
 
Another way of expressing this involves Christoffel symbols and is most easily written using index notation.
  <div align="center">
<math>
\frac{d}{dt} \hat{e}_c = \frac{h_a}{h_c} \ \Gamma^a_{bc} \dot{\lambda}_b \ \hat{e}_a \ \ (a \ne c)
</math>
  </div>
 
Here, we have been admittedly slopping with the placement and notation of indices in order to best accommodate the notation we have been using up to here.  The <math>b</math> index is summed over all the coordinates.  The <math>a</math> index is summed over all coordinates EXCEPT the <math>c</math> coordinate.  The <math>c</math> index is NOT summed over because it is a free index, meaning that it can equal any of the coordinates depending on which unit vector you want to differentiate. 
 
Writing this out for each of the individual unit vectors, and striking through terms that are automatically zero when dealing with an orthogonal coordinate system, produces
 
<table align="center" border="0" cellpadding="3">
<tr>
   <td align="right">
<math>
<math>
=
\frac{d}{dt} \hat{e}_1
</math>
</math>
  </td>
  <td align="center">
<math>=</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>
<math>
\frac{1}{2} \biggl( \frac{\chi_1}{B} \biggr)^2 \tanh^2\Zeta
\overbrace{\frac{h_2}{h_1} \left( \Gamma^2_{11} \dot{\lambda}_1 + \Gamma^2_{21} \dot{\lambda}_2 + \cancel{\Gamma^2_{31} \dot{\lambda}_3} \right)}^{A} \hat{e}_2 + \overbrace{\frac{h_3}{h_1} \left( \Gamma^3_{11} \dot{\lambda}_1 + \cancel{\Gamma^3_{21} \dot{\lambda}_2} + \Gamma^3_{31} \dot{\lambda}_3 \right)}^{B} \hat{e}_3
</math>
</math>
   </td>
   </td>
</tr>
</tr>
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>
<math>
\ell^{-2}  
\frac{d}{dt} \hat{e}_2
</math>
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>
<math>
=
\overbrace{\frac{h_1}{h_2} \left( \Gamma^1_{12} \dot{\lambda}_1 + \Gamma^1_{22} \dot{\lambda}_2 + \cancel{\Gamma^1_{32} \dot{\lambda}_3} \right)}^{-A} \hat{e}_1 + \overbrace{\frac{h_3}{h_2} \left( \cancel{\Gamma^3_{12} \dot{\lambda}_1} + \Gamma^3_{22} \dot{\lambda}_2 + \Gamma^3_{32} \dot{\lambda}_3 \right)}^{C} \hat{e}_3
</math>
</math>
   </td>
   </td>
   <td align="left">
</tr>
<tr>
   <td align="right">
<math>
<math>
\frac{A^2}{2\chi_2^2} \biggl[ \Chi_q^2 + 1 - \sqrt{ 1 + \Chi_q^2} \biggr]
\frac{d}{dt} \hat{e}_3
</math>
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>
<math>
=
\overbrace{\frac{h_1}{h_3} \left( \Gamma^1_{13} \dot{\lambda}_1 + \cancel{\Gamma^1_{23} \dot{\lambda}_2} + \Gamma^1_{33} \dot{\lambda}_3 \right)}^{-B} \hat{e}_1 + \overbrace{\frac{h_2}{h_3} \left( \cancel{\Gamma^2_{13} \dot{\lambda}_1} + \Gamma^2_{23} \dot{\lambda}_2 + \Gamma^2_{33} \dot{\lambda}_3 \right)}^{-C} \hat{e}_2
</math>
</math>
  </td>
</tr>
</table>
where, quite generally, the 27 Christoffel symbols are,
<table align="center" border="0" cellpadding="3">
<tr>
  <td align="right">
<math>\Gamma^1_{11}</math>
  </td>
  <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>\frac{\partial_1 h_1}{h_1}</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>\Gamma^1_{12} = \Gamma^1_{21}</math>
  </td>
  <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>\frac{\partial_2 h_1}{h_1}</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>\Gamma^1_{13} = \Gamma^1_{31}</math>
  </td>
  <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>0</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>\Gamma^1_{22}</math>
  </td>
  <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>-\frac{h_2}{h_1} \frac{\partial_1 h_2}{h_1}</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>\cancel{\Gamma^1_{23}} = \cancel{\Gamma^1_{32}}</math>
  </td>
  <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>0</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>\Gamma^1_{33}</math>
  </td>
  <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>-\frac{h_3}{h_1} \frac{\partial_1 h_3}{h_1}</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>\Gamma^2_{11}</math>
  </td>
  <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>-\frac{h_1}{h_2} \frac{\partial_2 h_1}{h_2}</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>\Gamma^2_{12} = \Gamma^2_{21}</math>
  </td>
  <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>\frac{\partial_1 h_2}{h_2}</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>\cancel{\Gamma^2_{13}} = \cancel{\Gamma^2_{31}}</math>
  </td>
  <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>0</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>\Gamma^2_{22}</math>
  </td>
  <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>\frac{\partial_2 h_2}{h_2}</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>\Gamma^2_{23} = \Gamma^2_{32}</math>
  </td>
  <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>0</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>\Gamma^2_{33}</math>
  </td>
  <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>-\frac{h_3}{h_2} \frac{\partial_2 h_3}{h_2}</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>\Gamma^3_{11}</math>
  </td>
  <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>0</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>\cancel{\Gamma^3_{12}} = \cancel{\Gamma^3_{21}}</math>
  </td>
  <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>0</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>\Gamma^3_{13} = \Gamma^3_{31}</math>
  </td>
  <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>\frac{\partial_1 h_3}{h_3}</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>\Gamma^3_{22}</math>
  </td>
  <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>0</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>\Gamma^3_{23} = \Gamma^3_{32}</math>
  </td>
  <td align="center">
<math>=</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>\frac{\partial_2 h_3}{h_3}</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>\Gamma^3_{33}</math>
  </td>
  <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>0</math>
  </td>
</tr>
</table>
Notice that it is the Christoffel symbols labeled with all three of the coordinate indices that are automatically zero for orthogonal coordinate systems.
For additional details surrounding the Christoffel symbols (the significant role they play in the field equations, and how they can be calculated) visit this page [[User:Jaycall/KillingVectorApproach|coming soon]].
==Time-Derivative of Position and Velocity Vectors==
In general for an orthogonal coordinate system, the velocity vector can be written as,
<div align="center">
<math>
<math>
\biggl( \frac{A}{\chi_2} \biggr)^2 \biggl[ \frac{1}{2} (\Upsilon - 1)\biggr] \Upsilon
\vec{v} = \hat{e}_1 (h_1 \dot{\lambda}_1) + \hat{e}_2 (h_2 \dot{\lambda}_2) +\hat{e}_3 (h_3 \dot{\lambda}_3) .
</math>
</math>
</div>
So, in general, the time-rate-of-change of the velocity vector is,
<table align="center" border="0" cellpadding="5">
<tr>
  <td align="right">
<math>\frac{d\vec{v}}{dt}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>
<math>
=
\hat{e}_1 \biggl[\frac{d(h_1 \dot{\lambda}_1)}{dt}\biggr] +  (h_1 \dot{\lambda}_1)\frac{d\hat{e}_1}{dt} +
\hat{e}_2 \biggl[\frac{d(h_2 \dot{\lambda}_2)}{dt}\biggr] +  (h_2 \dot{\lambda}_2)\frac{d\hat{e}_2}{dt} +
\hat{e}_3 \biggl[\frac{d(h_3 \dot{\lambda}_3)}{dt}\biggr] +  (h_3 \dot{\lambda}_3)\frac{d\hat{e}_3}{dt}
</math>
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>=</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>
<math>
\biggl( \frac{A}{\chi_2} \biggr)^2 \sinh^2\Zeta ( \cosh^2\Zeta + \sinh^2\Zeta )  
\hat{e}_1 \biggl[\frac{d(h_1 \dot{\lambda}_1)}{dt}\biggr] +  (h_1 \dot{\lambda}_1)\biggl[ \hat{e}_2 A + \hat{e}_3 B \biggr] +
\hat{e}_2 \biggl[\frac{d(h_2 \dot{\lambda}_2)}{dt}\biggr] +  (h_2 \dot{\lambda}_2)\biggl[ - \hat{e}_1 A + \hat{e}_3 C \biggr] +
\hat{e}_3 \biggl[\frac{d(h_3 \dot{\lambda}_3)}{dt}\biggr] + (h_3 \dot{\lambda}_3)\biggl[ - \hat{e}_1 B - \hat{e}_2 C \biggr]
</math>
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>
<math>=</math>
=
</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>
<math>
\biggl( \frac{\chi_1}{B} \biggr)^2( 1 + \tanh^2\Zeta )  
\hat{e}_1 \biggl[\frac{d(h_1 \dot{\lambda}_1)}{dt} - A(h_2 \dot{\lambda}_2) - B(h_3 \dot{\lambda}_3) \biggr] +
\hat{e}_2 \biggl[\frac{d(h_2 \dot{\lambda}_2)}{dt} + A(h_1 \dot{\lambda}_1) - C(h_3 \dot{\lambda}_3) \biggr] +
\hat{e}_3 \biggl[\frac{d(h_3 \dot{\lambda}_3)}{dt} + B(h_1 \dot{\lambda}_1) + C(h_2 \dot{\lambda}_2) \biggr]
</math>
</math>
   </td>
   </td>
Line 647: Line 1,058:
</table>
</table>


Hence, potentially useful expressions for the scale factors are,
Now, for the T3 coordinate system the position vector has a similar form, specifically,
<div align="center">
<math>
\vec{x} = \hat{e}_1 (h_1 {\lambda}_1) + \hat{e}_2 (h_2 {\lambda}_2) .
</math>
</div>
By analogy, then, the time-rate-of-change of the position vector is,


<table border="0" align="center" cellpadding="5">
<table align="center" border="0" cellpadding="5">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>\frac{d\vec{x}}{dt}</math>
  </td>
  <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>
<math>
2B^2 h_2^2
\hat{e}_1 \biggl[\frac{d(h_1 {\lambda}_1)}{dt}\biggr] +  (h_1 {\lambda}_1)\frac{d\hat{e}_1}{dt} +
\hat{e}_2 \biggl[\frac{d(h_2 {\lambda}_2)}{dt}\biggr] +  (h_2 {\lambda}_2)\frac{d\hat{e}_2}{dt}
</math>
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>
<math>
=
\hat{e}_1 \biggl[\frac{d(h_1 {\lambda}_1)}{dt}\biggr] +  (h_1 {\lambda}_1)\biggl[ \hat{e}_2 A + \hat{e}_3 B \biggr] +
\hat{e}_2 \biggl[\frac{d(h_2 {\lambda}_2)}{dt}\biggr] +  (h_2 {\lambda}_2)\biggl[ - \hat{e}_1 A + \hat{e}_3 C \biggr]
</math>
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>=</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>
<math>
2 \biggl[\frac{B z \varpi \ell}{\chi_2} \biggr]^2
\hat{e}_1 \biggl[\frac{d(h_1 {\lambda}_1)}{dt} - A(h_2 {\lambda}_2) \biggr] +
\hat{e}_2 \biggl[\frac{d(h_2 {\lambda}_2)}{dt} + A(h_1 {\lambda}_1) \biggr] +
\hat{e}_3 \biggl[B(h_1 {\lambda}_1) + C(h_2 {\lambda}_2) \biggr]
</math>
  </td>
</tr>
</table>
 
==Derived Identity for T3 Coordinates==
 
Looking at the "<math>\hat{e}_2</math>" component of this last expression, we have,
 
<div align="center">
<math>
\hat{e}_2 \cdot \frac{d\vec{x}}{dt} = \frac{d(h_2 {\lambda}_2)}{dt} + A(h_1 {\lambda}_1) .
</math>
</div>
 
But we also know that,
 
<div align="center">
<math>
\hat{e}_2 \cdot \vec{v} = h_2 \dot{\lambda}_2 .
</math>
</math>
</div>
Hence, it must be true that,
<table align="center" border="1" cellpadding="10" width="50%">
<tr>
  <td align="center">
<font color="darkblue">
For T3 Coordinates
</font>
   </td>
   </td>
</tr>
<tr>
   <td align="center">
   <td align="center">
<math>
<math>
=
\lambda_2 \frac{d h_2}{dt} = - A(h_1 {\lambda}_1)
</math><br /><br />
or, equivalently,<br /><br />
<math>
A  = - \frac{\lambda_2}{h_1 \lambda_1} \frac{d h_2}{dt}
</math>
</math>
   </td>
   </td>
   <td align="left">
</tr>
</table>
 
At some point, this identity needs to be checked by taking various partial derivatives of the scale factors and plugging them into the generic definition of <math>A</math>, given above.  (<font color="red">Actually, this shouldn't be necessary because in January, 2009, we derived the same equation-of-motion result shown below while using the uglier expression for <math>A</math>.  So this must be a correct identity in the context of T3 coordinates.</font>)
 
==Implications of Equation of Motion==
 
Looking now at the "<math>\hat{e}_2</math>" component of the acceleration (which we will set equal to zero), and assuming no motion in the <math>3^\mathrm{rd}</math> component direction, we have,
 
<div align="center">
<math>
\hat{e}_2 \cdot \frac{d\vec{v}}{dt} = \frac{d(h_2 \dot{\lambda}_2)}{dt} + A(h_1 \dot{\lambda}_1) =0
</math><br /><br />
<math>
\Rightarrow ~~~~~ \frac{d(h_2 \dot{\lambda}_2)}{dt} = -  A(h_1 \dot{\lambda}_1)
</math>
</div>
 
or, inserting the relation derived above for <math>A</math> in terms of <math>dh_2/dt</math> for T3 coordinates,
 
<span id="EOM.01"><table align="right" border="1" cellpadding="10" width="10%">
<tr><th><font color="darkblue">EOM.01</font></th></tr>
</table></span>
<div align="center">
<math>
\Rightarrow ~~~~~ \frac{d(h_2 \dot{\lambda}_2)}{dt} =  \biggl(\frac{\lambda_2 \dot{\lambda}_1}{\lambda_1}\biggr) \frac{dh_2}{dt}
</math>
<br /><br />
<math>
\Rightarrow ~~~~~ \frac{d(h_2 \lambda_1 \dot{\lambda}_2)}{dt} =  \dot{\lambda}_1 \frac{d(h_2 \lambda_2)}{dt} .
</math>
</div>
 
Or, equivalently (but perhaps more perversely),
 
<span id="EOM.02"><table align="right" border="1" cellpadding="10" width="10%">
<tr><th><font color="darkblue">EOM.02</font></th></tr>
</table></span>
<div align="center">
<math>
\frac{\dot{\lambda}_2}{\lambda_2} \biggl[ \frac{1}{h_2 \dot{\lambda}_2} \frac{d(h_2 \dot{\lambda}_2)}{dt} \biggr] =  \frac{\dot{\lambda}_1}{\lambda_1} \biggl[ \frac{1}{h_2} \frac{dh_2}{dt} \biggr]
</math>
<br /><br />
<math>
\Rightarrow ~~~~~ \frac{d \ln\lambda_2}{dt} \biggl[ \frac{d\ln(h_2 \dot{\lambda}_2)}{dt} \biggr] =  \frac{d\ln\lambda_1}{dt} \biggl[\frac{d\ln h_2}{dt} \biggr]
</math>
 
</div><br />
 
<font color="red">'''Note that Equation '''EOM.01''' is equivalent to the <i>simplest form</i> of the conservation that we derived &#8212; actually, Jay Call derived it &#8212; back in January, 2009.'''</font>  Specifically,
<table align="center" border="1" cellpadding="10" width="30%">
<tr>
   <td align="center">
<math>
<math>
\biggl( \frac{\chi_1}{\chi_2} \biggr)^2 \biggl[ \frac{\tanh^2\Zeta}{1+\tanh^2\Zeta} \biggr](1-\tanh^2\Zeta) ;
\lambda_1 \frac{d(h_2 \dot{\lambda}_2)}{dt} =  \lambda_2 \dot{\lambda}_1 \frac{dh_2}{dt}  
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>


<font color="green">'''The 64-thousand dollar question is, "Can we turn any of these expressions into a form which states that the total time-derivative of some function equals zero?" '''</font>
<!--
Another option is to look at the equivalent angular momentum element, <math>h_2^2 \dot{\lambda}_2</math>:
<div align="center">
<math>
\hat{e}_2 \cdot \frac{d\vec{v}}{dt} = \frac{d(h_2 \dot{\lambda}_2)}{dt} + A(h_1 \dot{\lambda}_1) =0
</math><br /><br />
<math>
\Rightarrow ~~~~~ h_2 \frac{d(h_2 \dot{\lambda}_2)}{dt} = -  A(h_1 h_2 \dot{\lambda}_1)
</math><br /><br />
<math>
\Rightarrow ~~~~~ \frac{d(h_2^2 \dot{\lambda}_2)}{dt} - h_2 \dot{\lambda}_2 \frac{dh_2}{dt} = -  A(h_1 h_2 \dot{\lambda}_1)
</math><br /><br />
<math>
\Rightarrow ~~~~~ \frac{d(h_2^2 \dot{\lambda}_2)}{dt} + h_2 \dot{\lambda}_2 \biggl[A h_1 \biggl( \frac{\lambda_1}{\lambda_2} \biggr)  \biggr] = -  A(h_1 h_2 \dot{\lambda}_1)
</math><br /><br />
<math>
\Rightarrow ~~~~~ \frac{d(h_2^2 \dot{\lambda}_2)}{dt} = -  A h_1 h_2 \lambda_1 \biggl[ \frac{\dot{\lambda}_1}{\lambda_1} +
\frac{\dot{\lambda}_2}{\lambda_2} \biggr] = -  h_1 h_2 \lambda_1 \biggl[ \frac{\dot{\lambda}_1}{\lambda_1} +
\frac{\dot{\lambda}_2}{\lambda_2} \biggr]\biggl[\frac{\dot{\lambda}_2}{h_1} \frac{\partial h_2}{\partial \lambda_1} -
\frac{\dot{\lambda}_1}{h_2} \frac{\partial h_1}{\partial \lambda_2}\biggr] .
</math><br /><br />
</div>
<font color="green">'''I'm not yet quite sure what to do with all of this.'''</font>
-->
Let's look at the <math>1^\mathrm{st}</math> component of the equation of motion. 
<div align="center">
<math>
\hat{e}_1 \cdot \frac{d\vec{v}}{dt} = \frac{d(h_1 \dot{\lambda}_1)}{dt} - A(h_2 \dot{\lambda}_2) = - \frac{1}{h_1}\frac{\partial\Phi}{\partial\lambda_1}
</math><br /><br />
<math>
\Rightarrow ~~~~~ \frac{d(h_1 \dot{\lambda}_1)}{dt} = A(h_2 \dot{\lambda}_2) - \frac{1}{h_1}\frac{\partial\Phi}{\partial\lambda_1} = - \biggl[ \frac{h_2 \lambda_2 }{h_1\lambda_1} \biggr]\dot{\lambda}_2 \frac{dh_2}{dt} - \frac{1}{h_1}\frac{\partial\Phi}{\partial\lambda_1}
</math>
</div>
==Logarithmic Derivatives of Scale Factors==
Given the collection of expressions detailed in our derivation up to this point, the logarithmic derivatives of the scale factors are:
<table align="center" border="1" cellpadding="5">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>
<math>
2B^2 h_1^2
\frac{\partial\ln h_1}{\partial\ln\lambda_1}
</math>
</math>
   </td>
   </td>
Line 691: Line 1,272:
   <td align="left">
   <td align="left">
<math>
<math>
2 \biggl[\frac{\chi_1 \ell}{B} \biggr]^2
- \biggl( \frac{q h_1 h_2 \lambda_2}{\lambda_1 } \biggr)^2
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>
\frac{\partial\ln h_1}{\partial\ln\lambda_2}
</math>
</math>
   </td>
   </td>
Line 701: Line 1,290:
   <td align="left">
   <td align="left">
<math>
<math>
\frac{2}{1+\tanh^2\Zeta} .
+ \biggl( \frac{q h_1 h_2 \lambda_2}{\lambda_1 }  \biggr)^2
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>


Notice that, because it is expressible entirely in terms of <math>\Chi_q</math>, the variable <math>\Zeta</math> is a function only of the product of the two key coordinates.  Hence, the scale factor <math>h_1</math> is only a function of the product of the coordinates while <math>h_2</math> depends on the ratio, as well as the product of the two coordinates.  In this context, note that <math>\Zeta</math> can be derived from the product of the two key coordinates via one of the following two relations:
<table border="0" align="center" cellpadding="5">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>
<math>
\frac{\chi_1\chi_2}{BA}  
\frac{\partial\ln h_2}{\partial\ln\lambda_1}
</math>
</math>
   </td>
   </td>
Line 724: Line 1,308:
   <td align="left">
   <td align="left">
<math>
<math>
\sinh\Zeta ~(1 + \sinh^2\Zeta)^{1/2}
+ (q h_1^2)^2
</math>
</math>
   </td>
   </td>
Line 731: Line 1,315:
<tr>
<tr>
   <td align="right">
   <td align="right">
&nbsp;
<math>
\frac{\partial\ln h_2}{\partial\ln\lambda_2}
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 740: Line 1,326:
   <td align="left">
   <td align="left">
<math>
<math>
\cosh\Zeta ~(\cosh^2\Zeta - 1)^{1/2} .
- ( qh_1^2 )^2
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>


This means, for example, that,
<div align="center">
<math>
\frac{\partial\ln h_1}{\partial\ln\lambda_2} = - \frac{\partial\ln h_1}{\partial\ln\lambda_1} ,
</math>
</div>
and,
<div align="center">
<math>
\frac{\partial\ln h_2}{\partial\ln\lambda_2} = - \frac{\partial\ln h_2}{\partial\ln\lambda_1} .
</math>
</div>
It also means that,
<div align="center">
<math>
\frac{d\ln h_2}{dt} = \biggl(\frac{\partial\ln h_2}{\partial\ln\lambda_1} \biggr) \frac{\dot{\lambda}_1}{\lambda_1} + \biggl(\frac{\partial\ln h_2}{\partial\ln\lambda_2} \biggr) \frac{\dot{\lambda}_2}{\lambda_2} = ( q h_1^2)^2 \biggl[\frac{\dot{\lambda}_1}{\lambda_1} - \frac{\dot{\lambda}_2}{\lambda_2} \biggr]
</math><br />
<math>
\Rightarrow ~~~~~ \frac{1}{h_1^4}\frac{d\ln h_2}{dt} = \frac{d\ln(\lambda_1/\lambda_2)^{q^2}}{dt}  ;
</math>
</div>
and,
<div align="center">
<math>
\frac{d\ln h_1}{dt} = \biggl(\frac{\partial\ln h_1}{\partial\ln\lambda_1} \biggr) \frac{\dot{\lambda}_1}{\lambda_1} + \biggl(\frac{\partial\ln h_1}{\partial\ln\lambda_2} \biggr) \frac{\dot{\lambda}_2}{\lambda_2} = - \biggl( \frac{q h_1 h_2 \lambda_2}{\lambda_1}  \biggr)^2 \biggl[\frac{\dot{\lambda}_1}{\lambda_1}- \frac{\dot{\lambda}_2}{\lambda_2} \biggr]
</math><br />
<math>
\Rightarrow ~~~~~ - \biggl( \frac{\lambda_1}{h_1 h_2 \lambda_2}  \biggr)^2 \frac{d\ln h_1}{dt} =  \frac{d\ln(\lambda_1/\lambda_2)^{q^2}}{dt}.
</math>
</div>
Hence, the logarithmic time-derivatives of the two key scale factors can be related to one another via the expression,
<table border="1" align="center" cellpadding="10" width="40%">
<tr>
  <th align="center">
<font color="darkblue">T3 Coordinates</font>
  </th>
</tr>
<tr><td align="center">
<math>
(h_1 \lambda_1)^2 \frac{d\ln h_1}{dt} + (h_2 \lambda_2)^2 \frac{d\ln h_2}{dt}  = 0 .
</math>
</td></tr>
</table>
Also, plugging the relevant logarithmic derivatives of the key scale factors directly into the definition of <math>A</math> given in our discussion of vector derivatives, above, we can confirm the relationship derived earlier between <math>A</math> and <math>dh_2/dt</math>.  We also can relate <math>A</math> directly to <math>dh_1/dt</math>.  Specifically,
<table border="1" align="center" cellpadding="10" width="40%">
<tr>
  <th align="center">
<font color="darkblue">T3 Coordinates</font>
  </th>
</tr>
<tr><td align="center">
<math>
A = - \biggl( \frac{h_2 \lambda_2}{h_1 \lambda_1} \biggr) \frac{d\ln h_2}{dt} = + \biggl( \frac{h_1 \lambda_1}{h_2 \lambda_2} \biggr) \frac{d\ln h_1}{dt} .
</math>
</td></tr>
</table>
It must therefore also be true that,
<table border="1" align="center" cellpadding="10" width="40%">
<tr>
  <th align="center">
<font color="darkblue">T3 Coordinates</font>
  </th>
</tr>
<tr><td align="center">
<math>
(h_1\lambda_1)^2 \frac{\partial \ln h_1}{\partial\lambda_j} = - (h_2\lambda_2)^2 \frac{\partial \ln h_2}{\partial\lambda_j}
</math>
</td></tr>
</table>
</table>
-->
 
=Special Case (quadratic)=
 
On a [[User:Tohline/Appendix/Ramblings/T3Integrals/QuadraticCase|separate page]] we examine the structure of the second component of the equation of motion in the special "quadratic" case of <math>q^2 = 2</math>.  Jay Call is independently investigating this same special case [[User:Jaycall/T3 Coordinates/Special_Case|on yet another wiki page]] so that we can ultimately compare and check each others' results.
 
 


=See Also=
=See Also=

Latest revision as of 19:35, 5 July 2010

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Integrals of Motion in T3 Coordinates

Motivated by the HNM82 derivation, in an accompanying chapter we have introduced a new T2 Coordinate System and have outlined a few of its properties. Here we offer a modest redefinition of the second radial coordinate in an effort to bring even more symmetry to the definition of the position vector, <math>\vec{x}</math>.


Definition

By defining the dimensionless angle,

<math> \Zeta \equiv \sinh^{-1}\biggl( \frac{qz}{\varpi} \biggr) , </math>

the two key "T3" coordinates will be written as,

<math> \lambda_1 </math>

<math>\equiv</math>

<math>\varpi \cosh\Zeta = ( \varpi^2 + q^2z^2 )^{1/2}</math>

      and      

<math> \lambda_2 </math>

<math>\equiv</math>

<math>\varpi [\sinh\Zeta ]^{1/(1-q^2)} = \biggl[\frac{\varpi^{q^2}}{qz}\biggr]^{1/(q^2-1)}</math>

Relevant Partial Derivatives

Here are some relevant partial derivatives:

 

<math> \frac{\partial}{\partial x} </math>

<math> \frac{\partial}{\partial y} </math>

<math> \frac{\partial}{\partial z} </math>

<math>\lambda_1</math>

<math> \frac{x}{\lambda_1} </math>

<math> \frac{y}{\lambda_1} </math>

<math> \frac{q^2 z}{\lambda_1} </math>

<math>\lambda_2</math>

<math> \frac{1}{(q^2-1)} \biggl[ \frac{\varpi^{q^2-1}}{\sinh\Zeta} \biggr]^{q^2/(q^2-1)} \biggl( \frac{q^3 z}{\varpi^{q^2+2}} \biggr) x </math>
<math> =\frac{q^2}{(q^2-1)} \biggl[ \frac{\varpi^{q^2}}{qz} \biggr]^{1/(q^2-1)} \biggl( \frac{x}{\varpi^2} \biggr) </math>
<math> =\frac{q^2}{(q^2-1)} \biggl[ \frac{\varpi}{qz} \biggr]^{1/(q^2-1)} \biggl( \frac{x}{\varpi} \biggr) </math>

<math> \frac{1}{(q^2-1)} \biggl[ \frac{\varpi^{q^2-1}}{\sinh\Zeta} \biggr]^{q^2/(q^2-1)} \biggl( \frac{q^3 z}{\varpi^{q^2+2}} \biggr) y </math>
<math> =\frac{q^2}{(q^2-1)} \biggl[ \frac{\varpi^{q^2}}{qz} \biggr]^{1/(q^2-1)} \biggl( \frac{y}{\varpi^2} \biggr) </math>
<math> =\frac{q^2}{(q^2-1)} \biggl[ \frac{\varpi}{qz} \biggr]^{1/(q^2-1)} \biggl( \frac{y}{\varpi} \biggr) </math>

<math> - \frac{1}{(q^2-1)} \biggl[ \frac{\varpi^{q^2-1}}{\sinh\zeta} \biggr]^{q^2/(q^2-1)} \frac{q}{\varpi^{q^2}} </math>
<math> =- \frac{1}{(q^2-1)} \biggl[ \frac{\varpi^{q^2}}{qz} \biggr]^{1/(q^2-1)} \frac{1}{z} </math>
<math> =- \frac{1}{(q^2-1)} \biggl[ \frac{\varpi^{q^2}}{qz^{q^2}} \biggr]^{1/(q^2-1)} </math>

<math>\lambda_3</math>

<math> - \frac{y}{\varpi^{2}} </math>

<math> + \frac{x}{\varpi^{2}} </math>

<math> 0 </math>

Alternatively, partials can be taken with respect to the cylindrical coordinates, <math>\varpi</math>, <math>z</math> and <math>\phi</math>. (Incidentally, I have reversed the traditional order of the <math>\phi</math> and <math>z</math> coordinates in an attempt to parallelize structure between cylindrical and T3 coordinates since <math>\lambda_3 \equiv \phi</math>.)

 

<math> \frac{\partial}{\partial \varpi} </math>

<math> \frac{\partial}{\partial z} </math>

<math> \frac{\partial}{\partial \phi} </math>

<math>{\lambda_1}</math>

<math> \frac{\varpi}{\lambda_1} </math>

<math> \frac{q^2 z}{\lambda_1} </math>

<math> 0 </math>

<math>\lambda_2</math>

<math> \frac{q^2}{q^2-1} \left( \frac{\varpi}{qz} \right)^{1/(q^2-1)} </math>

<math> -\frac{1}{q^2-1} \left( \frac{\varpi^{q^2}}{qz^{q^2}} \right)^{1/(q^2-1)} </math>

<math> 0 </math>

<math>\lambda_3</math>

<math> 0 </math>

<math> 0 </math>

<math> 1 </math>

Furthermore, the inverted partials are

 

<math> \frac{\partial}{\partial \lambda_1} </math>

<math> \frac{\partial}{\partial \lambda_2} </math>

<math> \frac{\partial}{\partial \lambda_3} </math>

<math>{\varpi}</math>

<math> \varpi \ell^2 \lambda_1 </math>

<math> (q^2-1) q^2 \varpi z^2 \ell^2 / \lambda_2 </math>

<math> 0 </math>

<math>z</math>

<math> q^2 z \ell^2 \lambda_1 </math>

<math> - (q^2-1) \varpi^2 z \ell^2 / \lambda_2 </math>

<math> 0 </math>

<math>\phi</math>

<math> 0 </math>

<math> 0 </math>

<math> 1 </math>

Scale Factors

The scale factors are,

<math>h_1^2</math>

<math>=</math>

<math> \biggl[ \biggl( \frac{\partial\lambda_1}{\partial x} \biggr)^2 + \biggl( \frac{\partial\lambda_1}{\partial y} \biggr)^2 + \biggl( \frac{\partial\lambda_1}{\partial z} \biggr)^2 \biggr]^{-1} </math>

<math>=</math>

<math> \lambda_1^2 \ell^2 </math>

 

 

<math>h_2^2</math>

<math>=</math>

<math> \biggl[ \biggl( \frac{\partial\lambda_2}{\partial x} \biggr)^2 + \biggl( \frac{\partial\lambda_2}{\partial y} \biggr)^2 + \biggl( \frac{\partial\lambda_2}{\partial z} \biggr)^2 \biggr]^{-1} </math>

<math>=</math>

<math> (q^2-1)^2 \biggl(\frac{\varpi z \ell}{\lambda_2} \biggr)^2 </math>

 

 

<math>h_3^2</math>

<math>=</math>

<math> \biggl[ \biggl( \frac{\partial\lambda_3}{\partial x} \biggr)^2 + \biggl( \frac{\partial\lambda_3}{\partial y} \biggr)^2 + \biggl( \frac{\partial\lambda_3}{\partial z} \biggr)^2 \biggr]^{-1} </math>

<math>=</math>

<math> \varpi^2 </math>

 

 

where,        <math>\ell \equiv (\varpi^2 + q^4 z^2)^{-1/2}</math>.

Direction Cosines

The following table contains expressions for the nine direction cosines.

Direction Cosines for T3 Coordinates
<math>\gamma_{ni} = h_n\frac{\partial\lambda_n}{\partial x_i}</math>

 

<math>i</math>

<math>n</math>

<math>\ell x</math>

<math>\ell y</math>

<math>q^2 \ell z</math>

<math>\frac{q^2 x z \ell}{\varpi}</math>

<math>\frac{q^2 y z \ell}{\varpi}</math>

<math>- \varpi \ell</math>

<math>- \frac{y}{\varpi}</math>

<math>+\frac{x}{\varpi}</math>

<math>0</math>

where: <math>\ell \equiv (\varpi^2 + q^4 z^2)^{-1/2}</math>

Orthogonality Condition

Next, let's use the example orthogonality condition derived elsewhere in connection with our overview of direction cosines. Specifically, let's see if Equation DC.02 is satisfied.

<math> \frac{\partial\lambda_1}{\partial \varpi} \cdot \frac{\partial\lambda_2}{\partial \varpi} + \frac{\partial\lambda_1}{\partial z} \cdot \frac{\partial\lambda_2}{\partial z} </math>

<math> = </math>

<math> \frac{\varpi}{\lambda_1} \biggl[ \frac{q^2}{q^2-1} \left( \frac{\varpi}{qz} \right)^{1/(q^2-1)}

\biggr] - 

\frac{q^2z}{\lambda_1} \biggl[ \frac{1}{q^2-1} \left( \frac{\varpi^{q^2}}{qz^{q^2}} \right)^{1/(q^2-1)}

\biggr]

</math>

 

<math> = </math>

<math> \frac{q^2}{(q^2-1)\lambda_1} \biggl\{ \varpi\biggl[ \left( \frac{\varpi}{qz} \right)^{1/(q^2-1)}

\biggr] - 

z \biggl[ \left( \frac{\varpi^{q^2}}{qz^{q^2}} \right)^{1/(q^2-1)}

\biggr] \biggr\}

</math>

 

<math> = </math>

<math> \frac{q^2}{(q^2-1)\lambda_1} \biggl[ q^{-1/(q^2-1)} \varpi^{1 + 1/(q^2-1)} z^{-1/(q^2-1)} - q^{-1/(q^2-1)} \varpi^{q^2/(q^2-1)} z^{1-q^2/(q^2-1)} \biggr] </math>

 

<math> = </math>

<math> 0 . </math>

Hence, the key orthogonality condition defined by Equation DC.02 is satisfied. MF53 also gives us relationships that should apply between the various direction cosines if the coordinate system is orthogonal. Let's check a few cases to see whether <math>\gamma_{mn} = M_{mn}</math>, where "<math>M_{mn}</math> is the minor of <math>\gamma_{mn}</math> in the determinant <math>|\gamma_{mn}|</math>":

<math> M_{11} = \gamma_{22}\gamma_{33} - \gamma_{23}\gamma_{32} = - (-\varpi\ell)\frac{x}{\varpi} = + \ell x . </math>

<math> M_{12} = \gamma_{23}\gamma_{31} - \gamma_{21}\gamma_{33} = -\varpi\ell \biggl(-\frac{y}{\varpi}\biggr) = +\ell y . </math>

<math> M_{13} = \gamma_{21}\gamma_{32} - \gamma_{22}\gamma_{31} = \biggl( \frac{q^2 x z \ell}{\varpi} \biggr) \frac{x}{\varpi} - \biggl( \frac{q^2 y z \ell}{\varpi} \biggr) \biggl( -\frac{y}{\varpi} \biggr) = q^2 \ell z. </math>

<math> M_{31} = \gamma_{12}\gamma_{23} - \gamma_{13}\gamma_{22} = \ell y (-\varpi\ell) - q^2 \ell z \biggl(\frac{q^2 yz\ell}{\varpi}\biggr) = - \frac{y \ell^2}{\varpi} \biggl( \varpi^2 + q^4 z^2 \biggr) = - \frac{y}{\varpi} . </math>

<math> M_{33} = \gamma_{11}\gamma_{22} - \gamma_{12}\gamma_{21} = \ell x \biggr(\frac{q^2 y z \ell}{\varpi} \biggr) - \ell y \biggr(\frac{q^2 x z \ell}{\varpi} \biggr) = 0 . </math>

All of these beautifully obey the relationship, <math>\gamma_{mn} = M_{mn}</math>.

Position Vector

The position vector is,

<math>\vec{x}</math>

<math>=</math>

<math> \hat{i}x + \hat{j}y + \hat{k}z </math>

<math>=</math>

<math> \hat{e}_1 (h_1 \lambda_1) + \hat{e}_2 (h_2 \lambda_2) . </math>

Vector Derivatives

For orthogonal coordinate systems, the time-rate-of-change of the three unit vectors are given by the expressions,

<math> \frac{d}{dt}\hat{e}_1 </math>

<math> = </math>

<math> \hat{e}_2 A + \hat{e}_3 B </math>

<math> \frac{d}{dt}\hat{e}_2 </math>

<math> = </math>

<math> - \hat{e}_1 A + \hat{e}_3 C </math>

<math> \frac{d}{dt}\hat{e}_3 </math>

<math> = </math>

<math> - \hat{e}_1 B - \hat{e}_2 C </math>

where,

<math> A </math>

<math> \equiv </math>

<math> \frac{\dot{\lambda}_2}{h_1} \frac{\partial h_2}{\partial \lambda_1} - \frac{\dot{\lambda}_1}{h_2} \frac{\partial h_1}{\partial \lambda_2} </math>

<math> B </math>

<math> \equiv </math>

<math> \frac{\dot{\lambda}_3}{h_1} \frac{\partial h_3}{\partial \lambda_1} - \frac{\dot{\lambda}_1}{h_3} \frac{\partial h_1}{\partial \lambda_3} </math>

<math> C </math>

<math> \equiv </math>

<math> \frac{\dot{\lambda}_3}{h_2} \frac{\partial h_3}{\partial \lambda_2} - \frac{\dot{\lambda}_2}{h_3} \frac{\partial h_2}{\partial \lambda_3} </math>

Another way of expressing this involves Christoffel symbols and is most easily written using index notation.

<math> \frac{d}{dt} \hat{e}_c = \frac{h_a}{h_c} \ \Gamma^a_{bc} \dot{\lambda}_b \ \hat{e}_a \ \ (a \ne c) </math>

Here, we have been admittedly slopping with the placement and notation of indices in order to best accommodate the notation we have been using up to here. The <math>b</math> index is summed over all the coordinates. The <math>a</math> index is summed over all coordinates EXCEPT the <math>c</math> coordinate. The <math>c</math> index is NOT summed over because it is a free index, meaning that it can equal any of the coordinates depending on which unit vector you want to differentiate.

Writing this out for each of the individual unit vectors, and striking through terms that are automatically zero when dealing with an orthogonal coordinate system, produces

<math> \frac{d}{dt} \hat{e}_1 </math>

<math>=</math>

<math> \overbrace{\frac{h_2}{h_1} \left( \Gamma^2_{11} \dot{\lambda}_1 + \Gamma^2_{21} \dot{\lambda}_2 + \cancel{\Gamma^2_{31} \dot{\lambda}_3} \right)}^{A} \hat{e}_2 + \overbrace{\frac{h_3}{h_1} \left( \Gamma^3_{11} \dot{\lambda}_1 + \cancel{\Gamma^3_{21} \dot{\lambda}_2} + \Gamma^3_{31} \dot{\lambda}_3 \right)}^{B} \hat{e}_3 </math>

<math> \frac{d}{dt} \hat{e}_2 </math>

<math>=</math>

<math> \overbrace{\frac{h_1}{h_2} \left( \Gamma^1_{12} \dot{\lambda}_1 + \Gamma^1_{22} \dot{\lambda}_2 + \cancel{\Gamma^1_{32} \dot{\lambda}_3} \right)}^{-A} \hat{e}_1 + \overbrace{\frac{h_3}{h_2} \left( \cancel{\Gamma^3_{12} \dot{\lambda}_1} + \Gamma^3_{22} \dot{\lambda}_2 + \Gamma^3_{32} \dot{\lambda}_3 \right)}^{C} \hat{e}_3 </math>

<math> \frac{d}{dt} \hat{e}_3 </math>

<math>=</math>

<math> \overbrace{\frac{h_1}{h_3} \left( \Gamma^1_{13} \dot{\lambda}_1 + \cancel{\Gamma^1_{23} \dot{\lambda}_2} + \Gamma^1_{33} \dot{\lambda}_3 \right)}^{-B} \hat{e}_1 + \overbrace{\frac{h_2}{h_3} \left( \cancel{\Gamma^2_{13} \dot{\lambda}_1} + \Gamma^2_{23} \dot{\lambda}_2 + \Gamma^2_{33} \dot{\lambda}_3 \right)}^{-C} \hat{e}_2 </math>

where, quite generally, the 27 Christoffel symbols are,

<math>\Gamma^1_{11}</math>

<math>=</math>

<math>\frac{\partial_1 h_1}{h_1}</math>

<math>\Gamma^1_{12} = \Gamma^1_{21}</math>

<math>=</math>

<math>\frac{\partial_2 h_1}{h_1}</math>

<math>\Gamma^1_{13} = \Gamma^1_{31}</math>

<math>=</math>

<math>0</math>

<math>\Gamma^1_{22}</math>

<math>=</math>

<math>-\frac{h_2}{h_1} \frac{\partial_1 h_2}{h_1}</math>

<math>\cancel{\Gamma^1_{23}} = \cancel{\Gamma^1_{32}}</math>

<math>=</math>

<math>0</math>

<math>\Gamma^1_{33}</math>

<math>=</math>

<math>-\frac{h_3}{h_1} \frac{\partial_1 h_3}{h_1}</math>

<math>\Gamma^2_{11}</math>

<math>=</math>

<math>-\frac{h_1}{h_2} \frac{\partial_2 h_1}{h_2}</math>

<math>\Gamma^2_{12} = \Gamma^2_{21}</math>

<math>=</math>

<math>\frac{\partial_1 h_2}{h_2}</math>

<math>\cancel{\Gamma^2_{13}} = \cancel{\Gamma^2_{31}}</math>

<math>=</math>

<math>0</math>

<math>\Gamma^2_{22}</math>

<math>=</math>

<math>\frac{\partial_2 h_2}{h_2}</math>

<math>\Gamma^2_{23} = \Gamma^2_{32}</math>

<math>=</math>

<math>0</math>

<math>\Gamma^2_{33}</math>

<math>=</math>

<math>-\frac{h_3}{h_2} \frac{\partial_2 h_3}{h_2}</math>

<math>\Gamma^3_{11}</math>

<math>=</math>

<math>0</math>

<math>\cancel{\Gamma^3_{12}} = \cancel{\Gamma^3_{21}}</math>

<math>=</math>

<math>0</math>

<math>\Gamma^3_{13} = \Gamma^3_{31}</math>

<math>=</math>

<math>\frac{\partial_1 h_3}{h_3}</math>

<math>\Gamma^3_{22}</math>

<math>=</math>

<math>0</math>

<math>\Gamma^3_{23} = \Gamma^3_{32}</math>

<math>=</math>

<math>\frac{\partial_2 h_3}{h_3}</math>

<math>\Gamma^3_{33}</math>

<math>=</math>

<math>0</math>

Notice that it is the Christoffel symbols labeled with all three of the coordinate indices that are automatically zero for orthogonal coordinate systems.

For additional details surrounding the Christoffel symbols (the significant role they play in the field equations, and how they can be calculated) visit this page coming soon.

Time-Derivative of Position and Velocity Vectors

In general for an orthogonal coordinate system, the velocity vector can be written as,

<math> \vec{v} = \hat{e}_1 (h_1 \dot{\lambda}_1) + \hat{e}_2 (h_2 \dot{\lambda}_2) +\hat{e}_3 (h_3 \dot{\lambda}_3) . </math>

So, in general, the time-rate-of-change of the velocity vector is,

<math>\frac{d\vec{v}}{dt}</math>

<math>=</math>

<math> \hat{e}_1 \biggl[\frac{d(h_1 \dot{\lambda}_1)}{dt}\biggr] + (h_1 \dot{\lambda}_1)\frac{d\hat{e}_1}{dt} + \hat{e}_2 \biggl[\frac{d(h_2 \dot{\lambda}_2)}{dt}\biggr] + (h_2 \dot{\lambda}_2)\frac{d\hat{e}_2}{dt} + \hat{e}_3 \biggl[\frac{d(h_3 \dot{\lambda}_3)}{dt}\biggr] + (h_3 \dot{\lambda}_3)\frac{d\hat{e}_3}{dt} </math>

 

<math>=</math>

<math> \hat{e}_1 \biggl[\frac{d(h_1 \dot{\lambda}_1)}{dt}\biggr] + (h_1 \dot{\lambda}_1)\biggl[ \hat{e}_2 A + \hat{e}_3 B \biggr] + \hat{e}_2 \biggl[\frac{d(h_2 \dot{\lambda}_2)}{dt}\biggr] + (h_2 \dot{\lambda}_2)\biggl[ - \hat{e}_1 A + \hat{e}_3 C \biggr] + \hat{e}_3 \biggl[\frac{d(h_3 \dot{\lambda}_3)}{dt}\biggr] + (h_3 \dot{\lambda}_3)\biggl[ - \hat{e}_1 B - \hat{e}_2 C \biggr] </math>

 

<math>=</math>

<math> \hat{e}_1 \biggl[\frac{d(h_1 \dot{\lambda}_1)}{dt} - A(h_2 \dot{\lambda}_2) - B(h_3 \dot{\lambda}_3) \biggr] + \hat{e}_2 \biggl[\frac{d(h_2 \dot{\lambda}_2)}{dt} + A(h_1 \dot{\lambda}_1) - C(h_3 \dot{\lambda}_3) \biggr] + \hat{e}_3 \biggl[\frac{d(h_3 \dot{\lambda}_3)}{dt} + B(h_1 \dot{\lambda}_1) + C(h_2 \dot{\lambda}_2) \biggr] </math>

Now, for the T3 coordinate system the position vector has a similar form, specifically,

<math> \vec{x} = \hat{e}_1 (h_1 {\lambda}_1) + \hat{e}_2 (h_2 {\lambda}_2) . </math>

By analogy, then, the time-rate-of-change of the position vector is,

<math>\frac{d\vec{x}}{dt}</math>

<math>=</math>

<math> \hat{e}_1 \biggl[\frac{d(h_1 {\lambda}_1)}{dt}\biggr] + (h_1 {\lambda}_1)\frac{d\hat{e}_1}{dt} + \hat{e}_2 \biggl[\frac{d(h_2 {\lambda}_2)}{dt}\biggr] + (h_2 {\lambda}_2)\frac{d\hat{e}_2}{dt} </math>

 

<math>=</math>

<math> \hat{e}_1 \biggl[\frac{d(h_1 {\lambda}_1)}{dt}\biggr] + (h_1 {\lambda}_1)\biggl[ \hat{e}_2 A + \hat{e}_3 B \biggr] + \hat{e}_2 \biggl[\frac{d(h_2 {\lambda}_2)}{dt}\biggr] + (h_2 {\lambda}_2)\biggl[ - \hat{e}_1 A + \hat{e}_3 C \biggr] </math>

 

<math>=</math>

<math> \hat{e}_1 \biggl[\frac{d(h_1 {\lambda}_1)}{dt} - A(h_2 {\lambda}_2) \biggr] + \hat{e}_2 \biggl[\frac{d(h_2 {\lambda}_2)}{dt} + A(h_1 {\lambda}_1) \biggr] + \hat{e}_3 \biggl[B(h_1 {\lambda}_1) + C(h_2 {\lambda}_2) \biggr] </math>

Derived Identity for T3 Coordinates

Looking at the "<math>\hat{e}_2</math>" component of this last expression, we have,

<math> \hat{e}_2 \cdot \frac{d\vec{x}}{dt} = \frac{d(h_2 {\lambda}_2)}{dt} + A(h_1 {\lambda}_1) . </math>

But we also know that,

<math> \hat{e}_2 \cdot \vec{v} = h_2 \dot{\lambda}_2 . </math>

Hence, it must be true that,

For T3 Coordinates

<math> \lambda_2 \frac{d h_2}{dt} = - A(h_1 {\lambda}_1) </math>

or, equivalently,

<math> A = - \frac{\lambda_2}{h_1 \lambda_1} \frac{d h_2}{dt} </math>

At some point, this identity needs to be checked by taking various partial derivatives of the scale factors and plugging them into the generic definition of <math>A</math>, given above. (Actually, this shouldn't be necessary because in January, 2009, we derived the same equation-of-motion result shown below while using the uglier expression for <math>A</math>. So this must be a correct identity in the context of T3 coordinates.)

Implications of Equation of Motion

Looking now at the "<math>\hat{e}_2</math>" component of the acceleration (which we will set equal to zero), and assuming no motion in the <math>3^\mathrm{rd}</math> component direction, we have,

<math> \hat{e}_2 \cdot \frac{d\vec{v}}{dt} = \frac{d(h_2 \dot{\lambda}_2)}{dt} + A(h_1 \dot{\lambda}_1) =0 </math>

<math> \Rightarrow ~~~~~ \frac{d(h_2 \dot{\lambda}_2)}{dt} = - A(h_1 \dot{\lambda}_1) </math>

or, inserting the relation derived above for <math>A</math> in terms of <math>dh_2/dt</math> for T3 coordinates,

EOM.01

<math> \Rightarrow ~~~~~ \frac{d(h_2 \dot{\lambda}_2)}{dt} = \biggl(\frac{\lambda_2 \dot{\lambda}_1}{\lambda_1}\biggr) \frac{dh_2}{dt} </math>

<math> \Rightarrow ~~~~~ \frac{d(h_2 \lambda_1 \dot{\lambda}_2)}{dt} = \dot{\lambda}_1 \frac{d(h_2 \lambda_2)}{dt} . </math>

Or, equivalently (but perhaps more perversely),

EOM.02

<math> \frac{\dot{\lambda}_2}{\lambda_2} \biggl[ \frac{1}{h_2 \dot{\lambda}_2} \frac{d(h_2 \dot{\lambda}_2)}{dt} \biggr] = \frac{\dot{\lambda}_1}{\lambda_1} \biggl[ \frac{1}{h_2} \frac{dh_2}{dt} \biggr] </math>

<math> \Rightarrow ~~~~~ \frac{d \ln\lambda_2}{dt} \biggl[ \frac{d\ln(h_2 \dot{\lambda}_2)}{dt} \biggr] = \frac{d\ln\lambda_1}{dt} \biggl[\frac{d\ln h_2}{dt} \biggr] </math>


Note that Equation EOM.01 is equivalent to the simplest form of the conservation that we derived — actually, Jay Call derived it — back in January, 2009. Specifically,

<math> \lambda_1 \frac{d(h_2 \dot{\lambda}_2)}{dt} = \lambda_2 \dot{\lambda}_1 \frac{dh_2}{dt} </math>

The 64-thousand dollar question is, "Can we turn any of these expressions into a form which states that the total time-derivative of some function equals zero?"


Let's look at the <math>1^\mathrm{st}</math> component of the equation of motion.

<math> \hat{e}_1 \cdot \frac{d\vec{v}}{dt} = \frac{d(h_1 \dot{\lambda}_1)}{dt} - A(h_2 \dot{\lambda}_2) = - \frac{1}{h_1}\frac{\partial\Phi}{\partial\lambda_1} </math>

<math> \Rightarrow ~~~~~ \frac{d(h_1 \dot{\lambda}_1)}{dt} = A(h_2 \dot{\lambda}_2) - \frac{1}{h_1}\frac{\partial\Phi}{\partial\lambda_1} = - \biggl[ \frac{h_2 \lambda_2 }{h_1\lambda_1} \biggr]\dot{\lambda}_2 \frac{dh_2}{dt} - \frac{1}{h_1}\frac{\partial\Phi}{\partial\lambda_1} </math>

Logarithmic Derivatives of Scale Factors

Given the collection of expressions detailed in our derivation up to this point, the logarithmic derivatives of the scale factors are:

<math> \frac{\partial\ln h_1}{\partial\ln\lambda_1} </math>

<math> = </math>

<math> - \biggl( \frac{q h_1 h_2 \lambda_2}{\lambda_1 } \biggr)^2 </math>

<math> \frac{\partial\ln h_1}{\partial\ln\lambda_2} </math>

<math> = </math>

<math> + \biggl( \frac{q h_1 h_2 \lambda_2}{\lambda_1 } \biggr)^2 </math>

<math> \frac{\partial\ln h_2}{\partial\ln\lambda_1} </math>

<math> = </math>

<math> + (q h_1^2)^2 </math>

<math> \frac{\partial\ln h_2}{\partial\ln\lambda_2} </math>

<math> = </math>

<math> - ( qh_1^2 )^2 </math>

This means, for example, that,

<math> \frac{\partial\ln h_1}{\partial\ln\lambda_2} = - \frac{\partial\ln h_1}{\partial\ln\lambda_1} , </math>

and,

<math> \frac{\partial\ln h_2}{\partial\ln\lambda_2} = - \frac{\partial\ln h_2}{\partial\ln\lambda_1} . </math>

It also means that,

<math> \frac{d\ln h_2}{dt} = \biggl(\frac{\partial\ln h_2}{\partial\ln\lambda_1} \biggr) \frac{\dot{\lambda}_1}{\lambda_1} + \biggl(\frac{\partial\ln h_2}{\partial\ln\lambda_2} \biggr) \frac{\dot{\lambda}_2}{\lambda_2} = ( q h_1^2)^2 \biggl[\frac{\dot{\lambda}_1}{\lambda_1} - \frac{\dot{\lambda}_2}{\lambda_2} \biggr] </math>

<math> \Rightarrow ~~~~~ \frac{1}{h_1^4}\frac{d\ln h_2}{dt} = \frac{d\ln(\lambda_1/\lambda_2)^{q^2}}{dt}  ; </math>

and,

<math> \frac{d\ln h_1}{dt} = \biggl(\frac{\partial\ln h_1}{\partial\ln\lambda_1} \biggr) \frac{\dot{\lambda}_1}{\lambda_1} + \biggl(\frac{\partial\ln h_1}{\partial\ln\lambda_2} \biggr) \frac{\dot{\lambda}_2}{\lambda_2} = - \biggl( \frac{q h_1 h_2 \lambda_2}{\lambda_1} \biggr)^2 \biggl[\frac{\dot{\lambda}_1}{\lambda_1}- \frac{\dot{\lambda}_2}{\lambda_2} \biggr] </math>

<math> \Rightarrow ~~~~~ - \biggl( \frac{\lambda_1}{h_1 h_2 \lambda_2} \biggr)^2 \frac{d\ln h_1}{dt} = \frac{d\ln(\lambda_1/\lambda_2)^{q^2}}{dt}. </math>

Hence, the logarithmic time-derivatives of the two key scale factors can be related to one another via the expression,

T3 Coordinates

<math> (h_1 \lambda_1)^2 \frac{d\ln h_1}{dt} + (h_2 \lambda_2)^2 \frac{d\ln h_2}{dt} = 0 . </math>

Also, plugging the relevant logarithmic derivatives of the key scale factors directly into the definition of <math>A</math> given in our discussion of vector derivatives, above, we can confirm the relationship derived earlier between <math>A</math> and <math>dh_2/dt</math>. We also can relate <math>A</math> directly to <math>dh_1/dt</math>. Specifically,

T3 Coordinates

<math> A = - \biggl( \frac{h_2 \lambda_2}{h_1 \lambda_1} \biggr) \frac{d\ln h_2}{dt} = + \biggl( \frac{h_1 \lambda_1}{h_2 \lambda_2} \biggr) \frac{d\ln h_1}{dt} . </math>

It must therefore also be true that,

T3 Coordinates

<math> (h_1\lambda_1)^2 \frac{\partial \ln h_1}{\partial\lambda_j} = - (h_2\lambda_2)^2 \frac{\partial \ln h_2}{\partial\lambda_j} </math>

Special Case (quadratic)

On a separate page we examine the structure of the second component of the equation of motion in the special "quadratic" case of <math>q^2 = 2</math>. Jay Call is independently investigating this same special case on yet another wiki page so that we can ultimately compare and check each others' results.


See Also

 

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation