Difference between revisions of "User:Tohline/Appendix/Ramblings/Radiation/CodeUnits"

From VistrailsWiki
Jump to navigation Jump to search
(→‎Determining Code Units: Summarize conversion expressions)
(→‎Determining Code Units: Tidy up and remove mean molecular weight from scaling relations)
Line 6: Line 6:
===Logic Used by Dominic Marcello===
===Logic Used by Dominic Marcello===
At our group meeting on 21 July 2010, Dominic explained how he had established the values of various coupling constants in his first, long, <math>q_0 = 0.7</math> simulations.  In place of the physical constants,  
At our group meeting on 21 July 2010, Dominic explained how he had established the values of various coupling constants in his first, long, <math>q_0 = 0.7</math> simulations.  In place of the physical constants,  
{{User:Tohline/Math/C_GravitationalConstant}}, {{User:Tohline/Math/C_SpeedOfLight}}, {{User:Tohline/Math/C_GasConstant}}, and {{User:Tohline/Math/C_RadiationConstant}}, he used the following code-unit
{{User:Tohline/Math/C_GravitationalConstant}}, {{User:Tohline/Math/C_SpeedOfLight}}, {{User:Tohline/Math/C_GasConstant}}, and {{User:Tohline/Math/C_RadiationConstant}}, Dominic used the following code-unit
values:
values &#8212; hereafter referred to as '''Case A''':
*<math>\tilde{g} = 1</math>
*<math>\tilde{g} = 1</math>
*<math>\tilde{c} = 198</math>
*<math>\tilde{c} = 198</math>
Line 15: Line 15:
<div align="center">
<div align="center">
<math>
<math>
T_\mathrm{cgs} = \biggl[ \biggl(\frac{c^2}{\Re \bar{\mu}^{-1}}\biggr)\biggl(\frac{\tilde{c}^2}{\tilde{r}}\biggr)^{-1} \biggr] T_\mathrm{code} ;
T_\mathrm{cgs} = \biggl[ \biggl(\frac{c^2}{\Re}\biggr)\biggl(\frac{\tilde{c}^2}{\tilde{r}}\biggr)^{-1} \biggr] T_\mathrm{code} ;
</math>
</math>
</div>
</div>
Line 21: Line 21:
<div align="center">
<div align="center">
<math>
<math>
\ell_\mathrm{cgs} = \biggl[\biggl(\frac{\Re^4 \bar{\mu}^{-4}}{c^4 G a_\mathrm{rad}}\biggr)\biggl(\frac{\tilde{r}^4}{\tilde{c}^4 \tilde{g}\tilde{a}}\biggr)^{-1}\biggr]^{1/2} \ell_\mathrm{code} ;
\ell_\mathrm{cgs} = \biggl[\biggl(\frac{\Re^4}{c^4 G a_\mathrm{rad}}\biggr)\biggl(\frac{\tilde{r}^4}{\tilde{c}^4 \tilde{g}\tilde{a}}\biggr)^{-1}\biggr]^{1/2} \ell_\mathrm{code} ;
</math>
</math>
</div>
</div>
Line 27: Line 27:
<div align="center">
<div align="center">
<math>
<math>
t_\mathrm{cgs} = \biggl[\biggl(\frac{\Re^4 \bar{\mu}^{-4}}{c^6 G a_\mathrm{rad}}\biggr)\biggl(\frac{\tilde{r}^4}{\tilde{c}^6 \tilde{g}\tilde{a}}\biggr)^{-1}\biggr]^{1/2} t_\mathrm{code} ;
t_\mathrm{cgs} = \biggl[\biggl(\frac{\Re^4 }{c^6 G a_\mathrm{rad}}\biggr)\biggl(\frac{\tilde{r}^4}{\tilde{c}^6 \tilde{g}\tilde{a}}\biggr)^{-1}\biggr]^{1/2} t_\mathrm{code} ;
</math>
</math>
</div>
</div>
Line 34: Line 34:
<div align="center">
<div align="center">
<math>
<math>
m_\mathrm{cgs} = \biggl[\biggl(\frac{\Re^4 \bar{\mu}^{-4}}{G^3 a_\mathrm{rad}}\biggr)\biggl(\frac{\tilde{r}^4}{\tilde{g}^3 \tilde{a}}\biggr)^{-1}\biggr]^{1/2} m_\mathrm{code} .
m_\mathrm{cgs} = \biggl[\biggl(\frac{\Re^4}{G^3 a_\mathrm{rad}}\biggr)\biggl(\frac{\tilde{r}^4}{\tilde{g}^3 \tilde{a}}\biggr)^{-1}\biggr]^{1/2} m_\mathrm{code} .
</math>
</math>
</div>
</div>
Line 43: Line 43:
* <math>[R_\mathrm{Accretor}]_\mathrm{code} = 0.4</math>; and
* <math>[R_\mathrm{Accretor}]_\mathrm{code} = 0.4</math>; and
* <math>[P_\mathrm{orbit}]_\mathrm{code} = 31</math>.
* <math>[P_\mathrm{orbit}]_\mathrm{code} = 31</math>.
According to Dominic's calculations &#8212; assuming the mean molecular weight {{User:Tohline/Math/MP_MeanMolecularWeight}} is 2 &#8212; this means that his simulation represents a real binary system with the following properties:
According to Dominic's calculations this means that his simulation represents a real binary system with the following properties:
* <math>[M_\mathrm{total}]_\mathrm{cgs} = 0.1 M_\odot</math>;
* <math>[M_\mathrm{total}]_\mathrm{cgs} = 0.1 M_\odot</math>;
* <math>[R_\mathrm{Accretor}]_\mathrm{cgs} = 0.56 R_\odot</math>; and
* <math>[R_\mathrm{Accretor}]_\mathrm{cgs} = 0.56 R_\odot</math>; and
* <math>[P_\mathrm{orbit}]_\mathrm{cgs} = 28~\mathrm{minutes}</math>.
* <math>[P_\mathrm{orbit}]_\mathrm{cgs} = 28~\mathrm{minutes}</math>.
Conversely, since in cgs units the Thompson cross-section is <math>[\sigma_T]_\mathrm{cgs} = 0.2~\mathrm{cm}^2~\mathrm{g}^{-1}</math>, Dominic determined that, in the code, he needed to set the Thompson cross-section value to <math>[\sigma_T]_\mathrm{code} = 8\times 10^{12}</math>.
Conversely &#8212; assuming pure helium, that is, a mean molecular weight {{User:Tohline/Math/MP_MeanMolecularWeight}} of 2 &#8212; since the Thompson cross-section is <math>[\sigma_T]_\mathrm{cgs} = 0.2~\mathrm{cm}^2~\mathrm{g}^{-1}</math>, Dominic determined that, in the code, he needed to set the Thompson cross-section value to <math>[\sigma_T]_\mathrm{code} = 8\times 10^{12}</math>.
Finally, Dominic pointed out that the characteristic size of a grid cell in the code is <math>[\Delta z]_\mathrm{code} = 0.025</math>.  Hence, if only the Thompson cross-section is relevant, the mean-free-path of a photon will equal the size of one grid cell if,
Finally, Dominic pointed out that the characteristic size of a grid cell in the code is <math>[\Delta z]_\mathrm{code} = 0.025</math>.  Hence, if only the Thompson cross-section is relevant, the mean-free-path of a photon will equal the size of one grid cell if,
<div align="center">
<div align="center">
Line 142: Line 142:
   <td align="left">
   <td align="left">
<math>
<math>
1.140\times 10^{-5}~\mathrm{s}
1.139\times 10^{-5}~\mathrm{s}
</math>
</math>
   </td>
   </td>
Line 179: Line 179:


<table border="1" align="center" cellpadding="8">
<table border="1" align="center" cellpadding="8">
<tr>
  <td colspan="3" align="center">
<font color="blue"><b>General Relations</b></font>
  </td>
</tr>
<tr>
<tr>
   <td align="right">
   <td align="right">
Line 192: Line 198:
   <td align="left">
   <td align="left">
<math>
<math>
1.083\times 10^{13}~\mathrm{K} \biggl( \frac{\tilde{r} \bar{\mu}}{\tilde{c}^2} \biggr)
1.083\times 10^{13}~\mathrm{K} \biggl( \frac{\tilde{r}}{\tilde{c}^2} \biggr)
</math>
</math>
   </td>
   </td>
Line 210: Line 216:
   <td align="left">
   <td align="left">
<math>
<math>
3.418\times 10^{5}~\mathrm{cm} \biggl( \frac{\tilde{c}^4 \tilde{g} \tilde{a} }{\tilde{r}^4 \bar{\mu}^4} \biggr)^{1/2}
3.418\times 10^{5}~\mathrm{cm} \biggl( \frac{\tilde{c}^4 \tilde{g} \tilde{a} }{\tilde{r}^4} \biggr)^{1/2}
</math>
</math>
   </td>
   </td>
Line 228: Line 234:
   <td align="left">
   <td align="left">
<math>
<math>
1.140\times 10^{-5}~\mathrm{s} \biggl( \frac{\tilde{c}^6 \tilde{g} \tilde{a} }{\tilde{r}^4 \bar{\mu}^4} \biggr)^{1/2}
1.139\times 10^{-5}~\mathrm{s} \biggl( \frac{\tilde{c}^6 \tilde{g} \tilde{a} }{\tilde{r}^4} \biggr)^{1/2}
</math>
</math>
   </td>
   </td>
Line 246: Line 252:
   <td align="left">
   <td align="left">
<math>
<math>
4.609\times 10^{33}~\mathrm{g} \biggl( \frac{\tilde{g}^3 \tilde{a} }{\tilde{r}^4 \bar{\mu}^4} \biggr)^{1/2}
4.609\times 10^{33}~\mathrm{g} \biggl( \frac{\tilde{g}^3 \tilde{a} }{\tilde{r}^4} \biggr)^{1/2}
</math>
</math>
   </td>
   </td>
Line 252: Line 258:
</table>
</table>


So, for the parameter values adopted by Dominic, above &#8212; hereafter referred to as '''Case A''' &#8212; and the particular SCF-cod-generated model provided by Wes, I derive,
For the '''Case A''' parameter values adopted by Dominic, above, and for the particular SCF-code-generated model provided by Wes, I derive,




<table border="1" align="center" cellpadding="8">
<table border="1" align="center" cellpadding="8">
<tr>
  <td colspan="5" align="center">
<b>Case A</b>
  </td>
</tr>
<tr>
<tr>
   <td align="right">
   <td align="right">
Line 297: Line 309:
   <td align="left">
   <td align="left">
<math>
<math>
1.140\times 10^{-5}~\mathrm{s} \biggl[ \frac{198^6 \times 0.044 }{(0.44)^4} \biggr]^{1/2} \times 31
1.139\times 10^{-5}~\mathrm{s} \biggl[ \frac{198^6 \times 0.044 }{(0.44)^4} \biggr]^{1/2} \times 31
</math>
</math>
   </td>
   </td>

Revision as of 14:20, 24 July 2010

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Marcello's Radiation-Hydro Simulations

Determining Code Units

Logic Used by Dominic Marcello

At our group meeting on 21 July 2010, Dominic explained how he had established the values of various coupling constants in his first, long, <math>q_0 = 0.7</math> simulations. In place of the physical constants, <math>~G</math>, <math>~c</math>, <math>~\Re</math>, and <math>~a_\mathrm{rad}</math>, Dominic used the following code-unit values — hereafter referred to as Case A:

  • <math>\tilde{g} = 1</math>
  • <math>\tilde{c} = 198</math>
  • <math>\tilde{r} = 0.44</math>
  • <math>\tilde{a} = 0.044</math>

This means that any temperature in the simulation that has a value <math>T_\mathrm{code}</math> in code units must represent an actual physical temperature <math>T_\mathrm{cgs}</math> in cgs units (i.e., measured in Kelvins) of,

<math> T_\mathrm{cgs} = \biggl[ \biggl(\frac{c^2}{\Re}\biggr)\biggl(\frac{\tilde{c}^2}{\tilde{r}}\biggr)^{-1} \biggr] T_\mathrm{code} ; </math>

any length-scale in the simulation that has a value <math>\ell_\mathrm{code}</math> must represent an actual physical length <math>\ell_\mathrm{cgs}</math> in cgs units of,

<math> \ell_\mathrm{cgs} = \biggl[\biggl(\frac{\Re^4}{c^4 G a_\mathrm{rad}}\biggr)\biggl(\frac{\tilde{r}^4}{\tilde{c}^4 \tilde{g}\tilde{a}}\biggr)^{-1}\biggr]^{1/2} \ell_\mathrm{code} ; </math>

any time in the simulation that has a value <math>t_\mathrm{code}</math> must represent an actual physical time <math>t_\mathrm{cgs}</math> in cgs units of,

<math> t_\mathrm{cgs} = \biggl[\biggl(\frac{\Re^4 }{c^6 G a_\mathrm{rad}}\biggr)\biggl(\frac{\tilde{r}^4}{\tilde{c}^6 \tilde{g}\tilde{a}}\biggr)^{-1}\biggr]^{1/2} t_\mathrm{code} ; </math>

and, finally, any mass in the simulation that has a value <math>m_\mathrm{code}</math> must represent an actual physical mass <math>m_\mathrm{cgs}</math> in cgs units of,

<math> m_\mathrm{cgs} = \biggl[\biggl(\frac{\Re^4}{G^3 a_\mathrm{rad}}\biggr)\biggl(\frac{\tilde{r}^4}{\tilde{g}^3 \tilde{a}}\biggr)^{-1}\biggr]^{1/2} m_\mathrm{code} . </math>


Now, the SCF-code-generated polytropic binary that Wes Even gave to Dominic had the following properties, in dimensionless code units:

  • <math>[M_\mathrm{total}]_\mathrm{code} = 0.85</math>;
  • <math>[R_\mathrm{Accretor}]_\mathrm{code} = 0.4</math>; and
  • <math>[P_\mathrm{orbit}]_\mathrm{code} = 31</math>.

According to Dominic's calculations this means that his simulation represents a real binary system with the following properties:

  • <math>[M_\mathrm{total}]_\mathrm{cgs} = 0.1 M_\odot</math>;
  • <math>[R_\mathrm{Accretor}]_\mathrm{cgs} = 0.56 R_\odot</math>; and
  • <math>[P_\mathrm{orbit}]_\mathrm{cgs} = 28~\mathrm{minutes}</math>.

Conversely — assuming pure helium, that is, a mean molecular weight <math>~\bar{\mu}</math> of 2 — since the Thompson cross-section is <math>[\sigma_T]_\mathrm{cgs} = 0.2~\mathrm{cm}^2~\mathrm{g}^{-1}</math>, Dominic determined that, in the code, he needed to set the Thompson cross-section value to <math>[\sigma_T]_\mathrm{code} = 8\times 10^{12}</math>. Finally, Dominic pointed out that the characteristic size of a grid cell in the code is <math>[\Delta z]_\mathrm{code} = 0.025</math>. Hence, if only the Thompson cross-section is relevant, the mean-free-path of a photon will equal the size of one grid cell if,

<math> \biggl[\frac{1}{\sigma_T\rho}\biggr]_\mathrm{code} = [\Delta z]_\mathrm{code} </math>

<math> \Rightarrow ~~~~~ [\rho]_\mathrm{code} = \biggl[\frac{1}{\sigma_T(\Delta z)}\biggr]_\mathrm{code} = \frac{1}{2\times 10^{11}} . </math>

Joel's Check of Dominic's Logic and Numbers

Let's plug in values of the physical units that we have tabulated in a Variables Appendix to see if we agree with Dominic's conversions.

<math> \frac{c^2}{\Re} </math>

<math> = </math>

<math> \frac{(3\times 10^{10})^2}{8.314\times 10^7}~\mathrm{cgs} </math>

<math> = </math>

<math> 1.083\times 10^{13}~\mathrm{K} </math>

<math> \biggl(\frac{\Re^4}{c^4 G a_\mathrm{rad}}\biggr)^{1/2} </math>

<math> = </math>

<math> \frac{(8.314\times 10^7)^2}{(3\times 10^{10})^2 (6.674\times 10^{-8})^{1/2}(7.566\times 10^{-15})^{1/2}}~\mathrm{cgs} </math>

<math> = </math>

<math> 3.418\times 10^{5}~\mathrm{cm} </math>

<math> \biggl(\frac{\Re^4}{c^6 G a_\mathrm{rad}}\biggr)^{1/2} </math>

<math> = </math>

<math> \frac{(8.314\times 10^7)^2}{(3\times 10^{10})^3 (6.674\times 10^{-8})^{1/2}(7.566\times 10^{-15})^{1/2}}~\mathrm{cgs} </math>

<math> = </math>

<math> 1.139\times 10^{-5}~\mathrm{s} </math>

<math> \biggl(\frac{\Re^4}{G^3 a_\mathrm{rad}}\biggr)^{1/2} </math>

<math> = </math>

<math> \frac{(8.314\times 10^7)^2}{(6.674\times 10^{-8})^{3/2}(7.566\times 10^{-15})^{1/2}}~\mathrm{cgs} </math>

<math> = </math>

<math> 4.609\times 10^{33}~\mathrm{g} </math>

Hence,

General Relations

<math> \frac{T_\mathrm{cgs}}{T_\mathrm{code}} </math>

<math> = </math>

<math> 1.083\times 10^{13}~\mathrm{K} \biggl( \frac{\tilde{r}}{\tilde{c}^2} \biggr) </math>

<math> \frac{\ell_\mathrm{cgs}}{\ell_\mathrm{code}} </math>

<math> = </math>

<math> 3.418\times 10^{5}~\mathrm{cm} \biggl( \frac{\tilde{c}^4 \tilde{g} \tilde{a} }{\tilde{r}^4} \biggr)^{1/2} </math>

<math> \frac{t_\mathrm{cgs}}{t_\mathrm{code}} </math>

<math> = </math>

<math> 1.139\times 10^{-5}~\mathrm{s} \biggl( \frac{\tilde{c}^6 \tilde{g} \tilde{a} }{\tilde{r}^4} \biggr)^{1/2} </math>

<math> \frac{m_\mathrm{cgs}}{m_\mathrm{code}} </math>

<math> = </math>

<math> 4.609\times 10^{33}~\mathrm{g} \biggl( \frac{\tilde{g}^3 \tilde{a} }{\tilde{r}^4} \biggr)^{1/2} </math>

For the Case A parameter values adopted by Dominic, above, and for the particular SCF-code-generated model provided by Wes, I derive,


Case A

<math> R_\mathrm{Accretor} </math>

<math> = </math>

<math> 3.418\times 10^{5}~\mathrm{cm} \biggl[ \frac{198^4 \times 0.044 }{(0.44)^4 } \biggr]^{1/2} \times 0.40 </math>

<math> = </math>

<math> 5.8\times 10^{9}~\mathrm{cm} = 0.083~\mathrm{R}_\odot </math>

<math> P_\mathrm{orbit} </math>

<math> = </math>

<math> 1.139\times 10^{-5}~\mathrm{s} \biggl[ \frac{198^6 \times 0.044 }{(0.44)^4} \biggr]^{1/2} \times 31 </math>

<math> = </math>

<math> 2.97\times 10^{3}~\mathrm{s} = 49.5 ~\mathrm{minutes} </math>

<math> M_\mathrm{total} </math>

<math> = </math>

<math> 4.609\times 10^{33}~\mathrm{g} \biggl[ \frac{0.044 }{(0.44)^4 } \biggr]^{1/2} \times 0.85 </math>

<math> = </math>

<math> 4.245\times 10^{33}~\mathrm{g} = 2.1~\mathrm{M}_\odot </math>


 

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation