Difference between revisions of "User:Tohline/Appendix/Ramblings/DirectionCosines"

From VistrailsWiki
Jump to navigation Jump to search
(→‎Usage: Swap order of two sub-sections)
(→‎Direction Cosines: Improve discussion of orthogonality)
Line 16: Line 16:
</math>
</math>
</div>
</div>
Let's define a delta function, <math>\delta_{mn}</math> such that <math>\delta_{mn} = 1</math> if <math>m = n</math> but <math>\delta_{mn}=0</math> if <math>m \ne n</math>.
 
The coordinate system <math>(\xi_1, \xi_2, \xi_3)</math> is orthogonal if all the direction cosines obey the following relation:
The coordinate system <math>(\xi_1, \xi_2, \xi_3)</math> is orthogonal if all the direction cosines obey the following relation:
<div align="center">
<math>\sum_s \gamma_{ms}\gamma_{ns} = \delta_{mn} .</math>
</div>


<span id="DC.01"><table align="right" border="1" cellpadding="10" width="10%">
<tr><th><font color="darkblue">DC.01</font></th></tr>
</table></span>
<table align="center" border="1" cellpadding="10">
<tr>
  <th align="center">
<font color="blue">
General Orthogonality Condition
</font>
  </th>
</tr>
<tr>
  <td align="center">
<math>\sum_s \gamma_{ms}\gamma_{ns} = \delta_{mn} ,</math>
  </td>
</tr>
</table>
where the ''[http://en.wikipedia.org/wiki/Kronecker_delta Kronecker delta function]'', <math>\delta_{mn}</math>, is defined such that <math>\delta_{mn} = 1</math> if <math>m = n</math> but <math>\delta_{mn}=0</math> if <math>m \ne n</math>.


==Usage==
==Usage==
Line 120: Line 135:


===Orthogonality===
===Orthogonality===
How can we check to make sure that the coordinate <math>\xi_1</math> is everywhere orthogonal to the coordinate <math>\xi_2</math>?  Here we'll illustrate how orthogonality can be checked for any axisymmetric coordinate system; that is, we'll examine behavior only in the <math>(\varpi,z)</math> plane.  First, note that,
How can we check to make sure that the coordinate <math>\xi_1</math> is everywhere orthogonal to the coordinate <math>\xi_2</math>?  Well, for an orthogonal system, the unit vectors should be everywhere perpendicular to one another, that is, the dot product of two (different) unit vectors should be zero at all coordinate positions.  Drawing on the above unit-vector transformation expressions, this means that, for <math>m \ne n</math>,
<div align="center">
<math>
\hat{e}_m \cdot \hat{e}_n = \biggl[ \hat\imath \gamma_{m1} + \hat\jmath \gamma_{m2} + \hat{k}\gamma_{m3} \biggr] \cdot \biggl[ \hat\imath \gamma_{n1} + \hat\jmath \gamma_{n2} + \hat{k}\gamma_{n3} \biggr] = \gamma_{m1}\gamma_{n1} + \gamma_{m2}\gamma_{n2} + \gamma_{m1}\gamma_{n2} = 0
</math><br /><br />
 
<math>
\Rightarrow ~~~~~ \sum_{s=1,3} \gamma_{ms}\gamma_{ns} = 0 .
</math>
</div>
This is precisely the condition enforced on direction cosines in conjunction with their definition, shown above as [[User:Tohline/Appendix/Ramblings/DirectionCosines#DC.01|Equation DC.01]].  Notice as well that, when <math>m = n</math>, Equation DC.01 is equivalent to the statement, <math>\hat{e}_m\cdot \hat{e}_m = 1</math>.
 
Here we'll illustrate how orthogonality can be checked for any axisymmetric coordinate system; that is, we'll examine behavior only in the <math>(\varpi,z)</math> plane.  First, note that,
<div align="center">
<div align="center">
<math>
<math>
Line 178: Line 205:


Hence,
Hence,
<span id="DC.01"><table align="right" border="1" cellpadding="10" width="10%">
<span id="DC.02"><table align="right" border="1" cellpadding="10" width="10%">
<tr><th><font color="darkblue">DC.01</font></th></tr>
<tr><th><font color="darkblue">DC.02</font></th></tr>
</table></span>
</table></span>
<table align="center" border="1" cellpadding="10">
<table align="center" border="1" cellpadding="10">

Revision as of 16:39, 5 July 2010

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Direction Cosines

Basic Definitions and Relations

Here we follow the notation of MF53.

<math> \gamma_{ni} = \frac{1}{h_n} \frac{\partial x_i}{\partial \xi_n} = h_n \frac{\partial\xi_n}{\partial x_i} . </math>

This means that the following inverse relationship applies in general:

<math> \frac{\partial x_i}{\partial \xi_n} = h_n^2 \frac{\partial\xi_n}{\partial x_i} . </math>

The coordinate system <math>(\xi_1, \xi_2, \xi_3)</math> is orthogonal if all the direction cosines obey the following relation:

DC.01

General Orthogonality Condition

<math>\sum_s \gamma_{ms}\gamma_{ns} = \delta_{mn} ,</math>

where the Kronecker delta function, <math>\delta_{mn}</math>, is defined such that <math>\delta_{mn} = 1</math> if <math>m = n</math> but <math>\delta_{mn}=0</math> if <math>m \ne n</math>.

Usage

Scale Factors

The above relations can be used to define the scale factors <math>(h_1, h_2, h_3)</math>. For example,

<math> \sum_s \gamma_{1s}\gamma_{1s} = \sum_s \biggl( h_1 \frac{\partial\xi_1}{\partial x_s} \biggr)^2 = 1 </math>

<math> \Rightarrow ~~~~~ h_1^2 = \biggl[ \biggl(\frac{\partial\xi_1}{\partial x} \biggr)^2 + \biggl(\frac{\partial\xi_1}{\partial y} \biggr)^2 + \biggl(\frac{\partial\xi_1}{\partial z} \biggr)^2 \biggr]^{-1} ; </math>

or,

<math> \sum_s \gamma_{1s}\gamma_{1s} = \sum_s \biggl( \frac{1}{h_1} \frac{\partial x_s}{\partial\xi_1} \biggr)^2 = 1 </math>

<math> \Rightarrow ~~~~~ h_1^2 = \biggl[ \biggl(\frac{\partial x}{\partial\xi_1} \biggr)^2 + \biggl(\frac{\partial y}{\partial\xi_1} \biggr)^2 + \biggl(\frac{\partial z}{\partial\xi_1} \biggr)^2 \biggr] . </math>

Unit Vectors

Direction cosines can be used to switch between the basis vectors of different orthogonal coordinate systems. The defining expressions are:

<math> \hat{e}_n = \hat\imath \gamma_{n1} + \hat\jmath \gamma_{n2} + \hat{k}\gamma_{n3} ; </math>

and,

<math> \hat\imath = \sum_{n=1,3}\hat{e}_n \gamma_{n1} ; ~~~~\mathrm{etc.} </math>

More explicitly, this last expression(s) implies,

<math> \hat\imath </math>

<math> = </math>

<math> \hat{e}_1 \gamma_{11} + \hat{e}_2 \gamma_{21} + \hat{e}_3 \gamma_{31} ; </math>

<math> \hat\jmath </math>

<math> = </math>

<math> \hat{e}_1 \gamma_{12} + \hat{e}_2 \gamma_{22} + \hat{e}_3 \gamma_{32} ; </math>

<math> \hat{k} </math>

<math> = </math>

<math> \hat{e}_1 \gamma_{13} + \hat{e}_2 \gamma_{23} + \hat{e}_3 \gamma_{33} ; </math>

notice that we have liberally used the idea that, for orthogonal systems, <math>\gamma_{nm} = \gamma_{mn}</math>.

Orthogonality

How can we check to make sure that the coordinate <math>\xi_1</math> is everywhere orthogonal to the coordinate <math>\xi_2</math>? Well, for an orthogonal system, the unit vectors should be everywhere perpendicular to one another, that is, the dot product of two (different) unit vectors should be zero at all coordinate positions. Drawing on the above unit-vector transformation expressions, this means that, for <math>m \ne n</math>,

<math> \hat{e}_m \cdot \hat{e}_n = \biggl[ \hat\imath \gamma_{m1} + \hat\jmath \gamma_{m2} + \hat{k}\gamma_{m3} \biggr] \cdot \biggl[ \hat\imath \gamma_{n1} + \hat\jmath \gamma_{n2} + \hat{k}\gamma_{n3} \biggr] = \gamma_{m1}\gamma_{n1} + \gamma_{m2}\gamma_{n2} + \gamma_{m1}\gamma_{n2} = 0 </math>

<math> \Rightarrow ~~~~~ \sum_{s=1,3} \gamma_{ms}\gamma_{ns} = 0 . </math>

This is precisely the condition enforced on direction cosines in conjunction with their definition, shown above as Equation DC.01. Notice as well that, when <math>m = n</math>, Equation DC.01 is equivalent to the statement, <math>\hat{e}_m\cdot \hat{e}_m = 1</math>.

Here we'll illustrate how orthogonality can be checked for any axisymmetric coordinate system; that is, we'll examine behavior only in the <math>(\varpi,z)</math> plane. First, note that,

<math> \frac{\partial\varpi}{\partial x} = \frac{\partial}{\partial x} (x^2 + y^2)^{1/2} = \frac{x}{\varpi} , </math>

and,

<math> \frac{\partial\varpi}{\partial y} = \frac{\partial}{\partial x} (x^2 + y^2)^{1/2} = \frac{y}{\varpi} , </math>

Hence,

<math> \frac{\partial\xi_i}{\partial x} = \frac{\partial\xi_i}{\partial \varpi}\frac{\partial\varpi}{\partial x} = \biggl(\frac{x}{\varpi}\biggr) \frac{\partial\xi_i}{\partial \varpi} , </math>

and,

<math> \frac{\partial\xi_i}{\partial y} = \frac{\partial\xi_i}{\partial \varpi}\frac{\partial\varpi}{\partial y} = \biggl(\frac{y}{\varpi}\biggr) \frac{\partial\xi_i}{\partial \varpi} . </math>

Therefore also,

<math> \biggl( \frac{\partial\xi_i}{\partial x} \biggr)^2 + \biggl( \frac{\partial\xi_i}{\partial y } \biggr)^2 = \biggl( \frac{\partial\xi_i}{\partial\varpi} \biggr)^2 </math>

<math> \Rightarrow ~~~~~ h_i^2 = \biggl[ \biggl(\frac{\partial\xi_i}{\partial \varpi} \biggr)^2 + \biggl(\frac{\partial\xi_i}{\partial z} \biggr)^2 \biggr]^{-1} . </math>

The relationship between the direction cosines when <math>m \ne n</math> gives a key orthogonality condition. Take, for example, <math>m=1</math> and <math>n=2</math>:

<math>\sum_s \gamma_{1s}\gamma_{2s} = 0 .</math>

This means that if <math>\xi_1</math> is orthogonal to <math>\xi_2</math>,

<math> h_1 \frac{\partial\xi_1}{\partial x} \cdot h_2 \frac{\partial\xi_2}{\partial x} + h_1 \frac{\partial\xi_1}{\partial y} \cdot h_2 \frac{\partial\xi_2}{\partial y} + h_1 \frac{\partial\xi_1}{\partial z} \cdot h_2 \frac{\partial\xi_2}{\partial z}= 0 </math>

<math> \Rightarrow ~~~~~ h_1 h_2\biggl[ \biggl( \frac{x^2}{\varpi^2} \biggr) \frac{\partial\xi_1}{\partial \varpi} \cdot \frac{\partial\xi_2}{\partial \varpi} + \biggl( \frac{y^2}{\varpi^2} \biggr) \frac{\partial\xi_1}{\partial \varpi} \cdot \frac{\partial\xi_2}{\partial \varpi} + \frac{\partial\xi_1}{\partial z} \cdot \frac{\partial\xi_2}{\partial z} \biggr] = 0 .

</math>

Hence,

DC.02

An Example Orthogonality Condition

<math> \frac{\partial\xi_1}{\partial \varpi} \cdot \frac{\partial\xi_2}{\partial \varpi} = - \frac{\partial\xi_1}{\partial z} \cdot \frac{\partial\xi_2}{\partial z} . </math>

Position Vector

Employing the unit-vector transformation relations tells us that in general the position vector is,

<math> \vec{x} </math>

<math> = </math>

<math> \hat\imath x + \hat\jmath y + \hat{k}z </math>

 

<math> = </math>

<math> (\hat{e}_1 \gamma_{11} + \hat{e}_2 \gamma_{21} + \hat{e}_3 \gamma_{31}) x + (\hat{e}_1 \gamma_{12} + \hat{e}_2 \gamma_{22} + \hat{e}_3 \gamma_{32})y + (\hat{e}_1 \gamma_{13} + \hat{e}_2 \gamma_{23} + \hat{e}_3 \gamma_{33})z </math>

 

<math> = </math>

<math> \hat{e}_1(x\gamma_{11} + y\gamma_{12} + z\gamma_{13} ) + \hat{e}_2(x\gamma_{21} + y\gamma_{22} + z\gamma_{23} ) + \hat{e}_3 (x\gamma_{31} + y\gamma_{32} + z \gamma_{33}) . </math>

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation