Difference between revisions of "User:Tohline/Appendix/Ramblings/DirectionCosines"

From VistrailsWiki
Jump to navigation Jump to search
(Lay out definitions of direction cosines)
 
(→‎Usage: Demonstrate orthogonality relation in meridional 2D plane)
Line 24: Line 24:


==Usage==
==Usage==
===Scale Factors===
The above relations can be used to define the scale factors <math>(h_1, h_2, h_3)</math>.  For example,
The above relations can be used to define the scale factors <math>(h_1, h_2, h_3)</math>.  For example,
<div align="center">
<div align="center">
Line 43: Line 45:
\Rightarrow ~~~~~ h_1^2 =  \biggl[ \biggl(\frac{\partial x}{\partial\xi_1} \biggr)^2 + \biggl(\frac{\partial y}{\partial\xi_1} \biggr)^2 + \biggl(\frac{\partial z}{\partial\xi_1} \biggr)^2 \biggr] .
\Rightarrow ~~~~~ h_1^2 =  \biggl[ \biggl(\frac{\partial x}{\partial\xi_1} \biggr)^2 + \biggl(\frac{\partial y}{\partial\xi_1} \biggr)^2 + \biggl(\frac{\partial z}{\partial\xi_1} \biggr)^2 \biggr] .
</math>
</math>
</div>
===Orthogonality===
How can we check to make sure that the coordinate <math>\xi_1</math> is everywhere orthogonal to the coordinate <math>\xi_2</math>?  Here we'll illustrate how orthogonality can be checked for any axisymmetric coordinate system; that is, we'll examine behavior only in the <math>(\varpi,z)</math> plane.  First, note that,
<div align="center">
<math>
\frac{\partial\varpi}{\partial x} = \frac{\partial}{\partial x} (x^2 + y^2)^{1/2} = \frac{x}{\varpi} ,
</math>
</div>
and,
<div align="center">
<math>
\frac{\partial\varpi}{\partial y} = \frac{\partial}{\partial x} (x^2 + y^2)^{1/2} = \frac{y}{\varpi} ,
</math>
</div>
Hence,
<div align="center">
<math>
\frac{\partial\xi_i}{\partial x} = \frac{\partial\xi_i}{\partial \varpi}\frac{\partial\varpi}{\partial x} = \biggl(\frac{x}{\varpi}\biggr) \frac{\partial\xi_i}{\partial \varpi} ,
</math>
</div>
and,
<div align="center">
<math>
\frac{\partial\xi_i}{\partial y} = \frac{\partial\xi_i}{\partial \varpi}\frac{\partial\varpi}{\partial y} = \biggl(\frac{y}{\varpi}\biggr) \frac{\partial\xi_i}{\partial \varpi} .
</math>
</div>
Therefore also,
<div align="center">
<math>
\biggl( \frac{\partial\xi_i}{\partial x}  \biggr)^2 + \biggl( \frac{\partial\xi_i}{\partial y }  \biggr)^2 = \biggl( \frac{\partial\xi_i}{\partial\varpi} \biggr)^2
</math><br />
<math>
\Rightarrow ~~~~~ h_i^2 =  \biggl[ \biggl(\frac{\partial\xi_i}{\partial \varpi} \biggr)^2 + \biggl(\frac{\partial\xi_i}{\partial z} \biggr)^2 \biggr]^{-1} .
</math>
</div>
</div>




===Unit Vectors===
Direction cosines can be used to switch between the basis vectors of different orthogonal coordinate systems.  For example,
Direction cosines can be used to switch between the basis vectors of different orthogonal coordinate systems.  For example,
<table align="center" border="0" cellpadding="5">
<table align="center" border="0" cellpadding="5">
Line 102: Line 143:
</tr>
</tr>
</table>
</table>
===Position Vector===
And, employing these relations tells us that in general the position vector is,
And, employing these relations tells us that in general the position vector is,
<table align="center" border="0" cellpadding="5">
<table align="center" border="0" cellpadding="5">

Revision as of 23:57, 3 July 2010

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Direction Cosines

Basic Definitions and Relations

Here we follow the notation of MF53.

<math> \gamma_{ni} = \frac{1}{h_n} \frac{\partial x_i}{\partial \xi_n} = h_n \frac{\partial\xi_n}{\partial x_i} . </math>

This means that the following inverse relationship applies in general:

<math> \frac{\partial x_i}{\partial \xi_n} = h_n^2 \frac{\partial\xi_n}{\partial x_i} . </math>

Let's define a delta function, <math>\delta_{mn}</math> such that <math>\delta_{mn} = 1</math> if <math>m = n</math> but <math>\delta_{mn}=0</math> if <math>m \ne n</math>. The coordinate system <math>(\xi_1, \xi_2, \xi_3)</math> is orthogonal if all the direction cosines obey the following relation:

<math>\sum_s \gamma_{ms}\gamma_{ns} = \delta_{mn} .</math>


Usage

Scale Factors

The above relations can be used to define the scale factors <math>(h_1, h_2, h_3)</math>. For example,

<math> \sum_s \gamma_{1s}\gamma_{1s} = \sum_s \biggl( h_1 \frac{\partial\xi_1}{\partial x_s} \biggr)^2 = 1 </math>

<math> \Rightarrow ~~~~~ h_1^2 = \biggl[ \biggl(\frac{\partial\xi_1}{\partial x} \biggr)^2 + \biggl(\frac{\partial\xi_1}{\partial y} \biggr)^2 + \biggl(\frac{\partial\xi_1}{\partial z} \biggr)^2 \biggr]^{-1} ; </math>

or,

<math> \sum_s \gamma_{1s}\gamma_{1s} = \sum_s \biggl( \frac{1}{h_1} \frac{\partial x_s}{\partial\xi_1} \biggr)^2 = 1 </math>

<math> \Rightarrow ~~~~~ h_1^2 = \biggl[ \biggl(\frac{\partial x}{\partial\xi_1} \biggr)^2 + \biggl(\frac{\partial y}{\partial\xi_1} \biggr)^2 + \biggl(\frac{\partial z}{\partial\xi_1} \biggr)^2 \biggr] . </math>

Orthogonality

How can we check to make sure that the coordinate <math>\xi_1</math> is everywhere orthogonal to the coordinate <math>\xi_2</math>? Here we'll illustrate how orthogonality can be checked for any axisymmetric coordinate system; that is, we'll examine behavior only in the <math>(\varpi,z)</math> plane. First, note that,

<math> \frac{\partial\varpi}{\partial x} = \frac{\partial}{\partial x} (x^2 + y^2)^{1/2} = \frac{x}{\varpi} , </math>

and,

<math> \frac{\partial\varpi}{\partial y} = \frac{\partial}{\partial x} (x^2 + y^2)^{1/2} = \frac{y}{\varpi} , </math>

Hence,

<math> \frac{\partial\xi_i}{\partial x} = \frac{\partial\xi_i}{\partial \varpi}\frac{\partial\varpi}{\partial x} = \biggl(\frac{x}{\varpi}\biggr) \frac{\partial\xi_i}{\partial \varpi} , </math>

and,

<math> \frac{\partial\xi_i}{\partial y} = \frac{\partial\xi_i}{\partial \varpi}\frac{\partial\varpi}{\partial y} = \biggl(\frac{y}{\varpi}\biggr) \frac{\partial\xi_i}{\partial \varpi} . </math>

Therefore also,

<math> \biggl( \frac{\partial\xi_i}{\partial x} \biggr)^2 + \biggl( \frac{\partial\xi_i}{\partial y } \biggr)^2 = \biggl( \frac{\partial\xi_i}{\partial\varpi} \biggr)^2 </math>

<math> \Rightarrow ~~~~~ h_i^2 = \biggl[ \biggl(\frac{\partial\xi_i}{\partial \varpi} \biggr)^2 + \biggl(\frac{\partial\xi_i}{\partial z} \biggr)^2 \biggr]^{-1} . </math>


Unit Vectors

Direction cosines can be used to switch between the basis vectors of different orthogonal coordinate systems. For example,

<math> \hat\imath </math>

<math> = </math>

<math> \hat{e}_1 \gamma_{11} + \hat{e}_2 \gamma_{21} + \hat{e}_3 \gamma_{31} ; </math>

<math> \hat\jmath </math>

<math> = </math>

<math> \hat{e}_1 \gamma_{12} + \hat{e}_2 \gamma_{22} + \hat{e}_3 \gamma_{32} ; </math>

<math> \hat{k} </math>

<math> = </math>

<math> \hat{e}_1 \gamma_{13} + \hat{e}_2 \gamma_{23} + \hat{e}_3 \gamma_{33} . </math>

Position Vector

And, employing these relations tells us that in general the position vector is,

<math> \vec{x} </math>

<math> = </math>

<math> \hat\imath x + \hat\jmath y + \hat{k}z </math>

 

<math> = </math>

<math> (\hat{e}_1 \gamma_{11} + \hat{e}_2 \gamma_{21} + \hat{e}_3 \gamma_{31}) x + (\hat{e}_1 \gamma_{12} + \hat{e}_2 \gamma_{22} + \hat{e}_3 \gamma_{32})y + (\hat{e}_1 \gamma_{13} + \hat{e}_2 \gamma_{23} + \hat{e}_3 \gamma_{33})z </math>

 

<math> = </math>

<math> \hat{e}_1(x\gamma_{11} + y\gamma_{12} + z\gamma_{13} ) + \hat{e}_2(x\gamma_{21} + y\gamma_{22} + z\gamma_{23} ) + \hat{e}_3 (x\gamma_{31} + y\gamma_{32} + z \gamma_{33}) . </math>

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation