# User:Tohline/Appendix/Ramblings/BordeauxSequences

### From VisTrailsWiki

(→Basillais & Huré (2019)) |
(→Key Figures) |
||

Line 33: | Line 33: | ||

===Key Figures=== | ===Key Figures=== | ||

+ | |||

+ | ====Eriguchi & Sugimoto (1981)==== | ||

+ | |||

+ | <table border="1" cellpadding="5" align="center" width="75%"> | ||

+ | <tr><td align="center" bgcolor="orange"> | ||

+ | Fig. 1 extracted without modification from p. 1873 of [https://academic.oup.com/ptp/article/65/6/1870/1908070 Eriguchi & Sugimoto (1981)]<p></p> | ||

+ | "''Another Equilibrium Sequence of Self-Gravitating and Rotating Incompressible Fluid''"<p></p> | ||

+ | Progress of Theoretical Physics, <p></p> | ||

+ | vol. 65, pp. 1870-1875 © Progress of Theoretical Physics | ||

+ | </td></tr> | ||

+ | <tr> | ||

+ | <td align="center"> | ||

+ | [[File:EriguchiSugimoto81Fig1.png|center|600px|Figure 3 from Eriguchi & Hachisu (1983)]] | ||

+ | </td> | ||

+ | </tr> | ||

+ | <tr> | ||

+ | <td align="left"> | ||

+ | CAPTION (modified here): The squared angular velocity is plotted against <math>~j^2</math> for a segment of the Maclaurin sequence (dashed curve), for the Dyson-Wong sequence (dotted curve), and for the new configurations reported in this 1981 paper by Eriguchi & Sugimoto (solid curve). The "×" mark denotes the neutral point on the Maclaurin sequence against the <math>~P_4(\eta)</math> perturbation. The dotted curve is plotted by using the values which are read from the curve of Fig. 6 of [https://ui.adsabs.harvard.edu/abs/1974ApJ...190..675W/abstract Wong (1974)], so it may contain errors to some extent. | ||

+ | |||

+ | </td> | ||

+ | </tr> | ||

+ | </table> | ||

+ | |||

+ | |||

====Eriguchi & Hachisu (1983)==== | ====Eriguchi & Hachisu (1983)==== | ||

## Current revision as of 11:37, 31 July 2020

## Contents |

# Université de Bordeaux (Part 2)

| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |

## Exterior Gravitational Potential of Toroids

J. -M. Huré, B. Basillais, V. Karas, A. Trova, & O. Semerák (2020), MNRAS, 494, 5825-5838 have published a paper titled, *The Exterior Gravitational Potential of Toroids.* Here we examine how their work relates to the published work by C.-Y. Wong (1973, Annals of Physics, 77, 279), which we have separately discussed in detail.

We discuss this topic in a separate, accompanying chapter.

## Spheroid-Ring Systems

Through a research collaboration at the Université de Bordeaux, B. Basillais & J. -M. Huré (2019), MNRAS, 487, 4504-4509 have published a paper titled, *Rigidly Rotating, Incompressible Spheroid-Ring Systems: New Bifurcations, Critical Rotations, and Degenerate States.*

### Key References

Here are some relevant publications:

- Hachisu (1986a, ApJS, 61, 479):
*A Versatile Method for Obtaining Structures of Rapidly Rotating Stars* - Fujisawa & Eriguchi (2014, MNRAS, 438, L61):
*Prolate stars due to meridional flows* - Huré, Hersant & Nasello (2018, MNRAS, 475, 63):
*The equilibrium of overpressurized polytropes* - & Eriguchi (1984, Ap&SS, 99, 71):
*Fission Sequence and Equilibrium Models of [Rigidly] Rotating Polytropes* - Hachisu, Eriguchi & Nomoto (1986b, ApJ, 311, 214):
*Fate of merging double white dwarfs. II - Numerical method* - Nishida, Eriguchi & Lanza (1992, ApJ, 401, 618):
*General Relativistic Structure of Star-Toroid Systems* - Woodward, Sankaran & Tohline (1992 ApJ, 394, 248):
*Tidal Disruption of a Star by a Massive Disk (The Axisymmetric Roche Problem)*

Especially,

- Eriguchi & Hachisu (1983, Prog. Theor. Phys., 69, 1131):
*Two Kinds of Axially Symmetric Equilibrium Sequences of Self-Gravitating and Rotating Incompressible Fluids: Two-Ring Sequence and Core-Ring Sequence* - Ansorg, Kleinwächter & Meinel (2003, MNRAS, 339, 515):
*Uniformly rotating axisymmetric fluid configurations bifurcating from highly flattened Maclaurin spheroids* - Hachisu, Eriguchi & Nomoto (1986a, ApJ, 308, 161):
*Fate of Merging Double White Dwarfs*

### Key Figures

#### Eriguchi & Sugimoto (1981)

Fig. 1 extracted without modification from p. 1873 of Eriguchi & Sugimoto (1981)
"Another Equilibrium Sequence of Self-Gravitating and Rotating Incompressible Fluid"
Progress of Theoretical Physics,
vol. 65, pp. 1870-1875 © Progress of Theoretical Physics |

CAPTION (modified here): The squared angular velocity is plotted against for a segment of the Maclaurin sequence (dashed curve), for the Dyson-Wong sequence (dotted curve), and for the new configurations reported in this 1981 paper by Eriguchi & Sugimoto (solid curve). The "×" mark denotes the neutral point on the Maclaurin sequence against the perturbation. The dotted curve is plotted by using the values which are read from the curve of Fig. 6 of Wong (1974), so it may contain errors to some extent. |

#### Eriguchi & Hachisu (1983)

Fig. 3 extracted without modification from p. 1134 of Eriguchi & Hachisu (1983)
"Two Kinds of Axially Symmetric Equilibrium Sequences of Self-Gravitating and Rotating Incompressible Fluids:"
Progress of Theoretical Physics,
Two-Ring Sequence and Core-Ring Sequence vol. 69, pp. 1131-1136 © Progress of Theoretical Physics |

CAPTION: The angular momentum-angular velocity relations. Solid curves represent uniformly rotating equilibrium sequences. - MS: Maclaurin spheroid sequence
- JE: Jacobi ellipsoid sequence
- OR: one-ring sequence
The number and letter |

#### AKM (2003)

Fig. 2 extracted without modification from p. 517 of Ansorg, Kleinwächter & Meinel (2003)
"Uniformly rotating axisymmetric fluid configurations bifurcating from highly flattened Maclaurin spheroids"
MNRAS, vol. 339, pp. 515-523 © Royal Astronomical Society |

CAPTION: For the first five axisymmetric sequences, is plotted against the dimensionless squared angular momentum, , using the same normalizations as Eriguchi & Hachisu (1983). Dotted and dashed curves again refer to the Maclaurin sequence and the Dyson approximation respectively. The full circles mark the bifurcation points on the Maclaurin sequence, and the open square the transition configuration of spheroidal to toroidal bodies on the Dyson ring sequence. |

#### Basillais & Huré (2019)

Fig. 4 extracted without modification from p. 4507 of Basillais & Huré (2019)
"Rigidly rotating, incompressible spheroid-ring systems: new bifurcations, critical rotations, and degenerate states"
MNRAS, vol. 487, pp. 4504-4509 © Royal Astronomical Society |

CAPTION: The spheroid-ring solutions ( |

© 2014 - 2020 by Joel E. Tohline |