Difference between revisions of "User:Tohline/Appendix/Ramblings/Additional Analytically Specified Eigenvectors for Zero-Zero Bipolytropes"

From VistrailsWiki
Jump to navigation Jump to search
(→‎Seek Alternate Solution: Construct subsection explaining how to solve the cubic equation)
Line 8: Line 8:


==Seek Alternate Solution==
==Seek Alternate Solution==
===Setup===
According to [[User:Tohline/SSC/Stability/BiPolytrope0_0#STEP4|STEP 4 in our accompanying summary discussion]], we need to solve the following "derivative matching" expression:
According to [[User:Tohline/SSC/Stability/BiPolytrope0_0#STEP4|STEP 4 in our accompanying summary discussion]], we need to solve the following "derivative matching" expression:
<div align="center">
<div align="center">
Line 291: Line 293:
</div>
</div>


Using <math>~z</math> in place of <math>~c_0</math>, this can be written in the form of a standard cubic equation.  Specifically,
===Solve Cubic Equation===
 
<div align="center">
<table border="1" cellpadding="8" width="80%">
<tr>
  <td align="left">
Using <math>~y</math> in place of <math>~c_0</math>, this "derivative matching" relation can be written in the form of a standard cubic equation.  Specifically,
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~a z^3 + b z^2 + c z + d</math>
<math>~a y^3 + b y^2 + c y + d</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 367: Line 374:
- 40Q+ 22\Chi[42\Chi  -Q (7\Chi-8) -24] \, .
- 40Q+ 22\Chi[42\Chi  -Q (7\Chi-8) -24] \, .
</math>
</math>
  </td>
</tr>
</table>
</div>
As is well known and documented &#8212; see, for example [http://mathworld.wolfram.com/CubicFormula.html Wolfram MathWorld] or [http://en.wikipedia.org/wiki/Cubic_function Wikipedia's discussion] of the topic &#8212; the roots of any cubic equation can be determined analytically.  In order to evaluate the root(s) of our particular cubic equation, we have drawn from the utilitarian [http://www.math.vanderbilt.edu/~schectex/courses/cubic/ online summary provided by Eric Schechter at Vanderbilt University].  For a cubic equation of the general form,
<div align="center">
<math>~ay^3 + by^2 + cy + d = 0 \, ,</math>
</div>
a real root is given by the expression,
<div align="center">
<math>~
y = p + \{q + [q^2 + (r-p^2)^3]^{1/2}\}^{1/3} + \{q - [q^2 + (r-p^2)^3]^{1/2}\}^{1/3}
\, ,</math>
</div>
where,
<div align="center">
<math>~p \equiv -\frac{b}{3a} \, ,</math> &nbsp;&nbsp;&nbsp;&nbsp;
<math>~q \equiv \biggl[p^3 + \frac{bc-3ad}{6a^2} \biggr] \, ,</math>
&nbsp;&nbsp;&nbsp;&nbsp; and &nbsp;&nbsp;&nbsp;&nbsp;
<math>~r=\frac{c}{3a} \, .</math>
</div>
(There is also a pair of imaginary roots, but they are irrelevant in the context of our overarching astrophysical discussion.)
   </td>
   </td>
</tr>
</tr>

Revision as of 17:09, 19 December 2016

Searching for Additional Eigenvectors of Zero-Zero Bipolytropes

This chapter is an extension of two accompanying discussions: The original discovery and detailed derivation; and the more readable, summary.

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

In our accompanying summary, we have demonstrated how analytically specified eigenvectors can be constructed for the mode labeled, <math>~(\ell, j) = (2,1)</math>. This was done by specifying <math>~\gamma_e</math>, then solving a quartic equation for <math>~q</math>. Shortly after completing this summary chapter, we noticed that an alternate approach may be to specify <math>~q</math>, then solve for <math>~\gamma_e</math>; and this path may be simpler because it may only involve solution of a quadratic equation. (Actually, we later have realized that the relevant equation is cubic, rather than quadratic. This is nevertheless simpler than the quartic equation.) If this proves to be the case, then it may also be possible to analytically construct eigenvectors of additional modes. Let's see.

Seek Alternate Solution

Setup

According to STEP 4 in our accompanying summary discussion, we need to solve the following "derivative matching" expression:

<math>~\frac{14(1+2q^3)^2}{7(1+2q^3)^2 - 5}</math>

<math>~=</math>

<math>~ \frac{c_0 + (c_0 + 3)A_{21}q^3 + (c_0 + 6)A_{21}B_{21} q^6}{1 + A_{21}q^3 + A_{21}B_{21}q^6} \, , </math>

where, recognizing that, <math>~\alpha_e = c_0(c_0+2) \, ,</math>

<math>~A_{21}</math>

<math>~\equiv</math>

<math>~\biggl[ \frac{c_0(c_0+5) - (c_0 + 6)(c_0 + 11)}{(c_0 + 3)(c_0+5) - \alpha_e}\biggr] </math>

 

<math>~=</math>

<math>~\biggl[ \frac{c_0^2 + 5c_0 - (c_0^2 + 17c_0 + 66)}{(c_0^2 + 8c_0 + 15) - (c_0^2+2c_0)}\biggr] </math>

 

<math>~=</math>

<math>~-\biggl( \frac{ 4c_0 + 22}{2c_0 + 5}\biggr) \, ,</math>

<math>~B_{21}</math>

<math>~\equiv</math>

<math>~\biggl[ \frac{(c_0+3)(c_0+8) - (c_0 + 6)(c_0 + 11)}{(c_0 + 6)(c_0+8) - \alpha_e}\biggr] </math>

 

<math>~=</math>

<math>~\biggl[ \frac{(c_0^2 +11c_0 + 24) - (c_0^2 + 17c_0 + 66)}{(c_0^2+14c_0+48) - (c_0^2 + 2c_0)}\biggr] </math>

 

<math>~=</math>

<math>~-\biggl( \frac{c_0 + 7 }{2c_0+8}\biggr) \, . </math>

Here, we assume that <math>~\Chi \equiv q^3</math> is specified and seek the corresponding value of <math>~c_0</math>. Given that the LHS of this matching relation is known once <math>~\Chi</math> has been specified, in order to simplify notation we will also define,

<math>~Q</math>

<math>~\equiv</math>

<math>~\frac{14(1+2\Chi)^2}{7(1+2\Chi)^2 - 5} \, .</math>

Then the matching relation becomes,

<math>~Q</math>

<math>~=</math>

<math>~ \frac{c_0 + (c_0 + 3)A_{21}\Chi + (c_0 + 6)A_{21}B_{21} \Chi^2}{1 + A_{21}\Chi + A_{21}B_{21}\Chi^2} </math>

<math>~\Rightarrow~~~ 0</math>

<math>~=</math>

<math>~[c_0 + (c_0 + 3)A_{21}\Chi + (c_0 + 6)A_{21}B_{21} \Chi^2 ] - Q[1 + A_{21}\Chi + A_{21}B_{21}\Chi^2 ] </math>

 

<math>~=</math>

<math>~\biggl[c_0 - (c_0 + 3)\biggl( \frac{ 4c_0 + 22}{2c_0 + 5}\biggr)\Chi + (c_0 + 6)\biggl( \frac{ 4c_0 + 22}{2c_0 + 5}\biggr)\biggl( \frac{c_0 + 7 }{2c_0+8}\biggr) \Chi^2 \biggr] - Q\biggl[1 - \biggl( \frac{ 4c_0 + 22}{2c_0 + 5}\biggr)\Chi + \biggl( \frac{ 4c_0 + 22}{2c_0 + 5}\biggr)\biggl( \frac{c_0 + 7 }{2c_0+8}\biggr)\Chi^2 \biggr] </math>

 

<math>~=</math>

<math>~\biggl[c_0(2c_0+5)(2c_0+8) - (c_0 + 3)(2c_0+8)( 4c_0 + 22)\Chi + (c_0 + 6)( 4c_0 + 22)(c_0 + 7 ) \Chi^2 \biggr] </math>

 

 

<math>~ - Q\biggl[(2c_0+5)(2c_0+8) - (2c_0+8)( 4c_0 + 22)\Chi + ( 4c_0 + 22)( c_0 + 7 )\Chi^2 \biggr] </math>

 

<math>~=</math>

<math>~\biggl\{c_0(4c_0^2 + 26c_0 + 40) + ( 4c_0 + 22)\Chi [(c_0^2 + 13c_0 + 42 ) \Chi- (2c_0^2 +14c_0 +24)] \biggr\} </math>

 

 

<math>~ - Q\biggl\{ (4c_0^2 + 26c_0 + 40) + ( 4c_0 + 22)\Chi [c_0(\Chi-2) + (7\Chi-8) ] \biggr\} </math>

 

<math>~=</math>

<math>~4c_0^3 +[ 26 - 4Q]c_0^2 + [40 - 26Q]c_0 - 40Q </math>

 

 

<math>~ + ( 4c_0 + 22)\Chi \biggl\{ [\Chi - 2]c_0^2 + [13\Chi -14 -Q (\Chi-2) ]c_0 + [42\Chi -Q (7\Chi-8) -24] \biggr\} </math>

 

<math>~=</math>

<math>~4c_0^3 +[ 26 - 4Q]c_0^2 + [40 - 26Q]c_0 - 40Q </math>

 

 

<math>~ + 4\Chi[\Chi - 2]c_0^3 + 4\Chi[13\Chi -14 -Q (\Chi-2) ]c_0^2 + 4\Chi[42\Chi -Q (7\Chi-8) -24]c_0 </math>

 

 

<math>~ + 22\Chi[\Chi - 2]c_0^2 + 22\Chi[13\Chi -14 -Q (\Chi-2) ]c_0 + 22\Chi[42\Chi -Q (7\Chi-8) -24] \, . </math>

Solve Cubic Equation

Using <math>~y</math> in place of <math>~c_0</math>, this "derivative matching" relation can be written in the form of a standard cubic equation. Specifically,

<math>~a y^3 + b y^2 + c y + d</math>

<math>~=</math>

<math>~ 0 \, , </math>

where,

<math>~a</math>

<math>~\equiv</math>

<math>~ 4 + 4\Chi(\Chi - 2)\, , </math>

<math>~b</math>

<math>~\equiv</math>

<math>~ ( 26 - 4Q) + 4\Chi[ 13\Chi -14 -Q (\Chi-2) ] + 22\Chi (\Chi - 2)\, , </math>

<math>~c</math>

<math>~\equiv</math>

<math>~

[40  - 26Q]+ 4\Chi[42\Chi  -Q (7\Chi-8) -24]  + 22\Chi[13\Chi  -14  -Q  (\Chi-2) ] \, ,

</math>

<math>~d</math>

<math>~\equiv</math>

<math>~ - 40Q+ 22\Chi[42\Chi -Q (7\Chi-8) -24] \, . </math>

As is well known and documented — see, for example Wolfram MathWorld or Wikipedia's discussion of the topic — the roots of any cubic equation can be determined analytically. In order to evaluate the root(s) of our particular cubic equation, we have drawn from the utilitarian online summary provided by Eric Schechter at Vanderbilt University. For a cubic equation of the general form,

<math>~ay^3 + by^2 + cy + d = 0 \, ,</math>

a real root is given by the expression,

<math>~ y = p + \{q + [q^2 + (r-p^2)^3]^{1/2}\}^{1/3} + \{q - [q^2 + (r-p^2)^3]^{1/2}\}^{1/3} \, ,</math>

where,

<math>~p \equiv -\frac{b}{3a} \, ,</math>      <math>~q \equiv \biggl[p^3 + \frac{bc-3ad}{6a^2} \biggr] \, ,</math>      and      <math>~r=\frac{c}{3a} \, .</math>

(There is also a pair of imaginary roots, but they are irrelevant in the context of our overarching astrophysical discussion.)

Related Discussions

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation