Difference between revisions of "User:Tohline/Appendix/Mathematics/ToroidalConfusion"

From VistrailsWiki
Jump to navigation Jump to search
Line 151: Line 151:


==Specific Application==
==Specific Application==
I stumbled into this dilemma when I tried to explicitly demonstrate how Begins on p. 332 of [https://books.google.com/books?id=MtU8uP7XMvoC&printsec=frontcover&dq=Abramowitz+and+stegun&hl=en&sa=X&ved=0ahUKEwialra5xNbaAhWKna0KHcLAASAQ6AEILDAA#v=onepage&q=Abramowitz%20and%20stegun&f=false M. Abramowitz & I. A. Stegun (1995)]
I stumbled into this dilemma when I tried to explicitly demonstrate how <math>~Q_{-1 / 2}(\cosh\eta)</math> can be derived from <math>~P_{-1 / 2}(z)</math> where, from &sect;8.13 of [https://books.google.com/books?id=MtU8uP7XMvoC&printsec=frontcover&dq=Abramowitz+and+stegun&hl=en&sa=X&ved=0ahUKEwialra5xNbaAhWKna0KHcLAASAQ6AEILDAA#v=onepage&q=Abramowitz%20and%20stegun&f=false M. Abramowitz &amp; I. A. Stegun (1995)], we find,
 


<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
Line 158: Line 157:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~Q_{-1 / 2}(z)</math>
<math>~Q_{-1 / 2}(\cosh\eta)</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 164: Line 163:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~
<math>~2 e^{- \eta / 2}
\biggl[\frac{2}{z+1}\biggr]^{1 / 2} ~K\biggl( \sqrt{ \frac{2}{z+1} }\biggr) \, ;
~K(e^{-\eta} ) \, ,
</math>
</math>
   </td>
   </td>
</tr>
</tr>
<tr>
<tr>
  <td align="right">
   <td align="center" colspan="3">Abramowitz &amp; Stegun (1995), eq. (8.13.4)</td>
<math>~Q_{-1 / 2}(\cosh\eta)</math>
  </td>
   <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~2 e^{- \eta / 2}
~K(e^{-\eta} ) \, ;
</math>
  </td>
</tr>
</tr>
</table>
</table>
can be derived from
and,
 
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
<tr>
<tr>
   <td align="right">
   <td align="right">
Line 196: Line 184:
   <td align="left">
   <td align="left">
<math>~
<math>~
\frac{2}{\pi} \biggl[\frac{2}{z+1}\biggr]^{1 / 2} ~K\biggl( \sqrt{ \frac{z-1}{z+1}} \biggr) \, ;
\frac{2}{\pi} \biggl[\frac{2}{z+1}\biggr]^{1 / 2} ~K\biggl( \sqrt{ \frac{z-1}{z+1}} \biggr) \, .
</math>
</math>
   </td>
   </td>
</tr>
</tr>
<tr>
<tr>
  <td align="right">
   <td align="center" colspan="3">Abramowitz &amp; Stegun (1995), eq. (8.13.1)</td>
<math>~P_{-1 / 2}(\cosh\eta)</math>
  </td>
   <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl[\frac{\pi}{2}~\cosh\biggl(\frac{\eta}{2}\biggr)\biggr]^{-1} ~K\biggl( \tanh \frac{\eta}{2} \biggr) \, ;
</math>
  </td>
</tr>
</tr>
</table>
</table>

Revision as of 17:54, 9 May 2018


Confusion Regarding Whipple Formulae

May, 2018 (J.E.Tohline): I am trying to figure out what the correct relationship is between half-integer degree, associated Legendre functions of the first and second kinds. In order to illustrate my current confusion, here I will restrict my presentation to expressions that give <math>~Q^m_{n - 1 / 2}(\cosh\eta)</math> in terms of <math>~P^n_{m - 1 / 2}(\coth\eta)</math>.


Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Published Expressions

From equation (34) of H. S. Cohl, J. E. Tohline, A. R. P. Rau, & H. M. Srivastiva (2000, Astronomische Nachrichten, 321, no. 5, 363 - 372) I find:

<math>~Q^m_{n - 1 / 2}(\cosh\eta)</math>

<math>~=</math>

<math>~ \frac{(-1)^n \pi}{\Gamma(n - m + \tfrac{1}{2})} \biggl[ \frac{\pi}{2\sinh\eta} \biggr]^{1 / 2} P^n_{m - 1 / 2}(\coth\eta) \, . </math>


From Howard Cohl's online overview of toroidal functions, I find:

<math>~Q^n_{m- 1 / 2}(\cosh\alpha)</math>

<math>~=</math>

<math>~(-1)^n ~\Gamma(n-m + \tfrac{1}{2}) \biggl[ \frac{\pi}{2\sinh\alpha} \biggr]^{1 / 2} P^m_{n- 1 / 2}(\coth\alpha)\, , </math>

Copying the Whipple's formula from §14.19 of DLMF,

<math>~\boldsymbol{Q}^{m}_{n-\frac{1}{2}}\left(\cosh\xi\right)</math>

<math>~=</math>

<math>~ \frac{\Gamma\left(m-n+ \tfrac{1}{2}\right)}{\Gamma\left(m+n+\tfrac{1}{2}\right)}\left(\frac{\pi}{2 \sinh\xi}\right)^{1 / 2}P^{n}_{m-\frac{1}{2}}\left(\coth\xi\right) \, . </math>

As per equation (8) in A. Gil, J. Segura, & N. M. Temme (2000, JCP, 161, 204 - 217), the relationship is:

<math>~Q_{n-1 / 2}^m (\lambda)</math>

<math>~=</math>

<math>~(-1)^n \frac{\pi^{3/2}}{\sqrt{2} \Gamma(n-m+1 / 2)} (x^2-1)^{1 / 4} P_{m-1 / 2}^n(x) \, , </math>

where, <math>~\lambda \equiv x/\sqrt{x^2-1}</math>. This expression from Gil et al. (2000) means, for example, that by identifying <math>~x</math> with <math>~\coth\eta</math>, we have <math>~\lambda = \cosh\eta</math>, and,

<math>~Q_{n-1 / 2}^m (\cosh\eta)</math>

<math>~=</math>

<math>~(-1)^n \frac{\pi^{3/2}}{\sqrt{2} \Gamma(n-m+1 / 2)} (\coth^2\eta-1)^{1 / 4} P_{m-1 / 2}^n(\coth\eta) </math>

 

<math>~=</math>

<math>~ \frac{(-1)^n ~\pi}{\Gamma(n-m+1 / 2)} \biggl( \frac{\pi}{2}\biggr)^{1 / 2} \biggl[\frac{\cosh^2\eta}{\sinh^2\eta}-1 \biggr]^{1 / 4} P_{m-1 / 2}^n(\coth\eta) </math>

 

<math>~=</math>

<math>~ \frac{(-1)^n ~\pi}{\Gamma(n-m+1 / 2)} \biggl( \frac{\pi}{2}\biggr)^{1 / 2} \biggl[\frac{1}{\sinh\eta}\biggr]^{1 / 2} P_{m-1 / 2}^n(\coth\eta) </math>

 

<math>~=</math>

<math>~ \frac{(-1)^n ~\pi}{\Gamma(n-m+1 / 2)} \biggl[\frac{\pi}{2\sinh\eta}\biggr]^{1 / 2} P_{m-1 / 2}^n(\coth\eta) \, , </math>

which matches the above expression drawn from Cohl et al. (2000), but which does not match either of the other two "published" (online) expressions.

Specific Application

I stumbled into this dilemma when I tried to explicitly demonstrate how <math>~Q_{-1 / 2}(\cosh\eta)</math> can be derived from <math>~P_{-1 / 2}(z)</math> where, from §8.13 of M. Abramowitz & I. A. Stegun (1995), we find,

<math>~Q_{-1 / 2}(\cosh\eta)</math>

<math>~=</math>

<math>~2 e^{- \eta / 2} ~K(e^{-\eta} ) \, , </math>

Abramowitz & Stegun (1995), eq. (8.13.4)

and,

<math>~P_{-1 / 2}(z)</math>

<math>~=</math>

<math>~ \frac{2}{\pi} \biggl[\frac{2}{z+1}\biggr]^{1 / 2} ~K\biggl( \sqrt{ \frac{z-1}{z+1}} \biggr) \, . </math>

Abramowitz & Stegun (1995), eq. (8.13.1)

See Also

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation