User:Tohline/SSC/Synopsis StyleSheet
Spherically Symmetric Configurations Synopsis
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
New Table Construction
| |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Equilibrium Structure | |||||||||||||||||||
Detailed Force Balance | Free-Energy Analysis | ||||||||||||||||||
Given a barotropic equation of state, <math>~P(\rho)</math>, solve the equation of
for the radial density distribution, <math>~\rho(r)</math>. |
The Free-Energy is,
Therefore, also,
Equilibrium configurations exist at extrema of the free-energy function, that is, they are identified by setting <math>~d\mathfrak{G}/dR = 0</math>. Hence, equilibria are defined by the condition,
| ||||||||||||||||||
Virial Equilibrium | |||||||||||||||||||
Multiply the hydrostatic-balance equation through by <math>~rdV</math> and integrate over the volume:
| |||||||||||||||||||
Stability Analysis | |||||||||||||||||||
Perturbation Theory | Free-Energy Analysis | ||||||||||||||||||
Given the radial profile of the density and pressure in the equilibrium configuration, solve the eigenvalue problem defined by the, LAWE: Linear Adiabatic Wave (or Radial Pulsation) Equation
to find one or more radially dependent, radial-displacement eigenvectors, <math>~x \equiv \delta r/r</math>, along with (the square of) the corresponding oscillation eigenfrequency, <math>~\omega^2</math>. |
The second derivative of the free-energy function is,
Evaluating this second derivative for an equilibrium configuration — that is by calling upon the (virial) equilibrium condition to set the value of the internal energy — we have,
|
Old Table Construction
Spherically Symmetric Configurations that undergo Adiabatic Compression/Expansion — adiabatic index, <math>~\gamma</math> |
|||||||||||||||||||
|
|||||||||||||||||||
Equilibrium Structure |
|||||||||||||||||||
Detailed Force Balance |
Free-Energy Analysis |
||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
The Free-Energy is,
Therefore, also,
Equilibrium configurations exist at extrema of the free-energy function, that is, they are identified by setting <math>~d\mathfrak{G}/dR = 0</math>. Hence, equilibria are defined by the condition,
|
||||||||||||||||||
Virial Equilibrium | |||||||||||||||||||
|
|||||||||||||||||||
Stability Analysis |
|||||||||||||||||||
Perturbation Theory |
Free-Energy Analysis |
||||||||||||||||||
Given the radial profile of the density and pressure in the equilibrium configuration, solve the eigenvalue problem defined by the, LAWE: Linear Adiabatic Wave (or Radial Pulsation) Equation
to find one or more radially dependent, radial-displacement eigenvectors, <math>~x \equiv \delta r/r</math>, along with (the square of) the corresponding oscillation eigenfrequency, <math>~\omega^2</math>. |
The second derivative of the free-energy function is,
Evaluating this second derivative for an equilibrium configuration — that is by calling upon the (virial) equilibrium condition to set the value of the internal energy — we have,
|
||||||||||||||||||
Variational Principle |
|||||||||||||||||||
Multiply the LAWE through by <math>~4\pi x dr</math>, and integrate over the volume of the configuration gives the, Governing Variational Relation
Now, by setting <math>~(d\ln x/d\ln r)_{r=R} = -3</math>, we can ensure that the pressure fluctuation is zero and, hence, <math>~P = P_e</math> at the surface, in which case this relation becomes,
|
|||||||||||||||||||
Approximation: Homologous Expansion/Contraction |
|||||||||||||||||||
If we guess that radial oscillations about the equilibrium state involve purely homologous expansion/contraction, then the radial-displacement eigenfunction is, <math>~x</math> = constant, and the governing variational relation gives,
|
See Also
© 2014 - 2021 by Joel E. Tohline |